Softwire Mesh Management Information Base (MIB)
draft-cui-softwire-mesh-mib-04

Abstract

This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in the Internet community.
In particular it defines objects for managing softwire mesh
[RFC5565].

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 13, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publishation of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

Table of Contents

1. Introduction ... 3
2. The Internet-Standard Management Framework 3
3. Terminology .. 3
4. Conventions ... 3
5. Structure of the MIB Module 3
 5.1. The swmSupportedTunnelTable Subtree 3
 5.2. The swmEncapsTable Subtree 4
 5.3. The swmBGPNeighborTable Subtree 4
 5.4. The swmMIBConformance Subtree 4
6. Relationship to Other MIB Modules 4
 6.1. Relationship to the IF-MIB 4
 6.2. Relationship to the IP Tunnel MIB 5
 6.3. MIB modules required for IMPORTS 5
7. Definitions ... 5
8. Security Considerations 11
9. IANA Considerations .. 11
10. References .. 12
 10.1. Normative References 12
 10.2. Informative References 12
 10.3. URL References .. 13
1. Introduction

Softwire mesh framework RFC 5565 [RFC5565] is a tunneling mechanism which enables connectivity between islands of IPv4, IPv6 or dual-stack networks across single IPv4 or IPv6 backbone networks. In softwire mesh solution, extended multiprotocol-BGP (MP-BGP) is used to set up tunnels and advertise prefixes among address family border routers (AFBRs).

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular it defines objects for managing softwire mesh [RFC5565].

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). They are defined using the mechanisms stated in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

3. Terminology

This document uses terminology from softwire problem statement RFC 4925 [RFC4925] and softwire mesh framework RFC5565 [RFC5565].

4. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

5. Structure of the MIB Module

The softwire mesh MIB provides a method to configure and manage the softwire mesh objects through SNMP.

5.1. The swmSupportedTunnelsTable Subtree

Since AFBR need to negotiate with BGP peer what kind of tunnel they will use, it should firstly announce the types of tunnels it
supports. The swmSupportedTunnlTable subtree provides the
information. According to section 4 of RFC 5512[RFC5512], current
softwire mesh tunnel types include IP-IP, GRE and L2TPv3.

5.2. The swmEncapsTable Subtree

The swmEncapsTable subtree provides softwire mesh NLRI-NH information
about the AFBR. It indicates which I-IP destination address will be
encapsulated according to the arriving packet’s E-IP destination
address. The definitions of E-IP and I-IP are explained in section
4.1 of RFC 5565[RFC5565].

5.3. The swmBGPNeighborTable Subtree

The subtree provides softwire mesh BGP neighbor information about the
AFBR. It includes the address of softwire mesh BGP peer, and the
kind of tunnel that the AFBR would use to communicate with this BGP peer.

5.4. The swmMIBConformance Subtree

The subtree provides conformance information of MIB objects.

6. Relationship to Other MIB Modules

6.1. Relationship to the IF-MIB

The Interfaces MIB [RFC2863] defines generic managed objects for
managing interfaces. Each logical interface (physical or virtual)
has an ifEntry. Tunnels are handled by creating a logical interface
(ifEntry) for each tunnel. Softwire mesh tunnel also acts as a
virtual interface, which has corresponding entries in IP Tunnel MIB
and Interface MIB. Those corresponding entries are indexed by
ifIndex.

The ifOperStatus in ifTable would be used to represent whether the
mesh function of the AFBR has been started. During the BGP OPEN
phase, if the softwire mesh capability is negotiated, the mesh
function could be considered to be started, and ifOperStatus is "up".
Otherwise the ifOperStatus is "down".

If it is IPv4-over-IPv6 softwire mesh tunnel, the ifInUcastPkts will
represent the number of IPv6 packets which can be decapsulated to
IPv4 in the virtual interface. The ifOutUcastPkts contains the
number of IPv6 packets which have been encapsulated with IPv4 packets
in it. Particularly, if these IPv4 packets need to be fragmented,
the number counted here is the packets after fragmentation.
If it is IPv6-over-IPv4 softwire mesh tunnel, the ifInUcastPkts stands for the number of IPv4 packets which would be decapsulated to IPv6 in the virtual interface. The ifOutUcastPkts represents the number of IPv4 packets which have been encapsulated from IPv6. Particularly, if these IPv6 packets need to be fragmented, the number counted here is the packets after fragmentation. Similar definition apply to other counting objects in ifTable.

6.2. Relationship to the IP Tunnel MIB

The IP Tunnel MIB [RFC4087] contains objects common to all IP tunnels, including softwire mesh. Additionally, tunnel encapsulation specific MIB (as is defined in this document) extends the IP tunnel MIB to further described encapsulation specific information.

Since softwire mesh is a point to multi-point tunnel, we need to specify an encapsulation table to support E-IP routing among AFBRs. With the encapsulation information, the correct forwarding of E-IP packets will be performed among AFBRs by using I-IP encapsulation. Each AFBR also needs to know information about remote BGP peers (AFBRs), so that these AFBRs can negotiate E-IP information and the tunnel types they support.

The implementation of the IP Tunnel MIB is required for softwire mesh. The tunnelIfEncapsMethod in the tunnelIfEntry should be set to softwireMesh("xx"), and corresponding entry in the softwire mesh MIB module will exist for every tunnelIfEntry with this tunnelIfEncapsMethod. The tunnelIfRemoteInetAddress must be set to 0.0.0.0 for IPv4 or :: for IPv6 because it is a point to multi-point tunnel.

Since tunnelIfAddressType in tunnelIfTable represents the type of address in the corresponding tunnelIfLocalInetAddress and tunnelIfRemoteInetAddress objects, we can also use the tunnelIfAddressType to specify the softwire mesh tunnel is IPv4-over-IPv6 or IPv6-over-IPv4. When tunnelIfAddressType is IPv4, the encapsulation would be IPv6-over-IPv4; When tunnelIfAddressType is IPv6, the encapsulation would be IPv4-over-IPv6.

6.3. MIB modules required for IMPORTS

The following MIB module IMPORTS objects from SNMPv2-SMI [RFC2578], SNMPv2-TC [RFC2579], SNMPv2-CONF [RFC2580], IF-MIB [RFC2863] and INET-ADDRESS-MIB [RFC4001].

7. Definitions

SOFTWIRE-MESH-MIB DEFINITIONS ::= BEGIN
IMPORTS
 TruthValue, TEXTUAL-CONVENTION
 TimeStamp
 FROM SNMPv2-TC

OBJECT-GROUP, MODULE-COMPLIANCE
 FROM SNMPv2-CONF

MODULE-IDENTITY, OBJECT-TYPE, mib-2, Unsigned32, Counter32,
 Counter64
 FROM SNMPv2-SMI

IANAtunnelType
 FROM IANAifType-MIB;

InetAddress, InetAddressPrefixLength
 FROM INET-ADDRESS-MIB

swmMIB MODULE-IDENTITY
 LAST-UPDATED "201112290000Z" -- December 29, 2011
 ORGANIZATION "Softwire Working Group"
 CONTACT-INFO "

 Yong Cui
 Email: yong@csnet1.cs.tsinghua.edu.cn

 Jiang Dong
 Email: dongjiang@csnet1.cs.tsinghua.edu.cn

 Peng Wu
 Email: weapon@csnet1.cs.tsinghua.edu.cn

 Mingwei Xu
 Email: xmw@cernet.edu.cn

 Email comments directly to the softwire WG Mailing
 List at softwires@ietf.org

"

DESCRIPTION
 "This MIB module contains managed object definitions for
 the softwire mesh framework."

REVISION "201203120000Z"
DESCRIPTION
 "draft-04 version"
::= {transmission xxx} --xxx to be replaced with correct value

-- swmSupportedTunnelTable
swmSupportedTunnelTable OBJECT-TYPE
SYNTAX SEQUENCE OF swmSupportedTunnelEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A table of objects that shows what kind of tunnels can be supported in the AFBR."
::= { swmMIB 1 }

swmSupportedTunnelEntry OBJECT-TYPE
SYNTAX swmSupportedTunnelEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A set of objects that shows what kind of tunnels can be supported in the AFBR. If the AFBR supports several kinds of tunnel type, the swmSupportedTunnelTable would have several entries."
INDEX { swmSupportedTunnelType }
::= { swmSupportedTunnelTable 1 }

swmSupportedTunnelEntry ::= SEQUENCE {
 swmSupportedTunnelType IANATunnelType
}

swmSupportedTunnelType OBJECT-TYPE
SYNTAX IANATunnelType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "Represents the kind of tunneling type that the AFBR supports."
::= { swmSupportedTunnelTypeEntry 1 }

-- end of swmSupportedTunnelTable

--swmEncapsTable
swmEncapsTable OBJECT-TYPE
SYNTAX SEQUENCE OF swmEncapsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A table of objects that display and control the softwire mesh encapsulation information."
::= { swmMIB 2 }

swmEncapsEntry OBJECT-TYPE
SYNTAX swmEncapsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A set of objects that display and control the
software mesh encapsulation information."
INDEX { ifIndex,
 swmEncapsEIPDst,
 swmEncapsEIPMask
}
::= { swmEncapsTable 1 }

swmEncapsEntry ::=
SEQUENCE {
 swmEncapsEIPDst InetAddress,
 swmEncapsEIPMask InetAddressPrefixLength,
 swmEncapsIIPDst InetAddress
}

swmEncapsEIPDst OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The destination E-IP address that decide which
I-IP address will be encapsulated. The address Type
is opposite to tunnelIfAddressType in tunnelIfTable."
::= { swmEncapsEntry 1 }

swmEncapsEIPMask OBJECT-TYPE
SYNTAX InetAddressPrefixLength
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The prefix length of E-IP address."
::= { swmEncapsEntry 2 }

swmEncapsIIPDst OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The I-IP address that will be encapsulated
according to the E-IP address. The address Type
is the same as tunnelIfAddressType in tunnelIfTable.
Since the tunnelIfRemoteInetAddress in tunnelIfTable
should be 0.0.0.0 or ::, swmEncapsIIPDst is the
destination address used in the outer IP header."
::= { swmEncapsEntry 3 }

Cui, et al. Expires September 13, 2012 [Page 8]
-- End of swmEncapsTable

-- swmBGPNeighborTable

swmBGPNeighborTable OBJECT-TYPE
SYNTAX SEQUENCE OF swmBGPNeighborEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A table of objects that display the softwire mesh
 BGP neighbor information."
::= { swmMIB 3 }

swmBGPNeighborEntry OBJECT-TYPE
SYNTAX swmBGPNeighborEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A set of objects that display the softwire mesh
 BGP neighbor information."
INDEX {
 ifIndex,
 swmBGPNeighborInetAddress
}
::= { swmBGPNeighborTable 1 }

swmBGPNeighborEntry ::= SEQUENCE {
 swmBGPNeighborInetAddress InetAddress,
 swmBGPNeighborTunnelType IANATunnelType
}

swmBGPNeighborInetAddress OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The address of the ABFR’s BGP neighbor. The
 address type is the same as tunnelIfAddressType
 in tunnelIfTable"
::= { swmBGPNeighborEntry 1 }

swmBGPNeighborTunnelType OBJECT-TYPE
SYNTAX IANATunnelType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "Represents the kind of tunneling type that the
 AFBR used to communication with the BGP neighbor"
::= { swmBGPNeighborEntry 2 }
 -- End of swmBGPNeighborTable

-- conformance information
swmMIBConformance
 OBJECT IDENTIFIER ::= { swmMIB 4 }
swmMIBCompliances
 OBJECT IDENTIFIER ::= { swmMIBConformance 1 }
swmMIBGroups
 OBJECT IDENTIFIER ::= { swmMIBConformance 2 }

-- compliance statements
swmMIBCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "Describes the requirements for conformance to the softwire
 mesh MIB."
 MODULE -- this module
 MANDATORY-GROUPS { swmSupportedTunnelGroup,
 swmEncapsGroup,
 swmBGPNeighborGroup
 }
 ::= { swmMIBCompliances 1 }

swmSupportedTunnelGroup OBJECT-GROUP
 OBJECTS {
 swmSupportedTunnelType
 }
 STATUS current
 DESCRIPTION
 "The collection of objects which are used to show
 what kind of tunnel the AFBR supports."
 ::= { swmMIBGroups 1 }

swmEncapsGroup OBJECT-GROUP
 OBJECTS {
 swmEncapsEIPDst,
 swmEncapsEIPMask,
 swmEncapsIID
 }
 STATUS current
 DESCRIPTION
 "The collection of objects which are used to display
 softwire mesh encapsulation information."
 ::= { swmMIBGroups 2 }

8. Security Considerations

The swmMIB module can be used for configuration of certain objects, and anything that can be configured can be incorrectly configured, with potentially disastrous results. Because this MIB module reuses the IP tunnel MIB, the security considerations of the IP tunnel MIB is also applicable to the Softwire mesh MIB.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPsec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator's responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

9. IANA Considerations

The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER values recorded in the SMI Numbers registry, and the following IANA-assigned tunnelType values recorded in the IANAatunnelType-MIB registry:
Descriptor OBJECT IDENTIFIER value
---------- -----------------------
swmMIB { transmission XXX }

IANAtunnelType ::= TEXTUAL-CONVENTION
SYNTAX INTEGER {
 softwireMesh ("XX") -- softwire Mesh tunnel
}

10. References

10.1. Normative References

10.2. Informative References

10.3. URL References

[idguidelines] IETF Internet Drafts editor, "http://www.ietf.org/ietf/1id-guidelines.txt".

[xml2rfc] XML2RFC tools and documentation, "http://xml.resource.org".

[ops] the IETF OPS Area, "http://www.ops.ietf.org".

Authors' Addresses

Yong Cui
Tsinghua University
Department of Computer Science, Tsinghua University
Beijing 100084
P.R.China

Phone: +86-10-6260-3059
EMail: yong@csnet1.cs.tsinghua.edu.cn

Jiang Dong
Tsinghua University
Department of Computer Science, Tsinghua University
Beijing 100084
P.R.China

Phone: +86-10-6278-5822
EMail: dongjiang@csnet1.cs.tsinghua.edu.cn