The Managed Object Aggregation MIB
<draft-glenn-mo-aggr-mib-00.txt>

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on May 13, 2001.

Copyright Notice

Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

this memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it is used to configure an agent to aggregate MOs and to service queries related to the aggregated MOs.
Table of Contents

1. Introduction .. 3
2. The SNMP Management Framework 6
3. The Requirements for Managed Object Aggregation 7
4. MIB Design ... 7
5. The Managed Object Aggregation MIB 8
6. Intellectual Property .. 18
7. Acknowledgements ... 18
References ... 17
Security Considerations ... 21
Authors’ Addresses ... 22
Full Copyright Statement ... 23
1. Introduction.

For the purpose of management it is necessary to access Managed Objects (MOs). The SNMP framework provides a mechanism for naming and describing managed objects. These objects are accessed via a virtual information store termed a Management Information Base (MIB). MIBs have been defined by equipment, protocol and, application developers to provide management access to the managed entities. We will call the MOs defined in these MIBs - simple MOs (SMO). Management applications will access one or more of these MOs one or more times to monitor the target entity.

There is a cost associated with polling. The cost is the network bandwidth and the packet header processing overhead at the command generator (manager) and the command responder (agent). This cost constrains the number of objects that can be polled and the interval at which polling can be carried out.

The overhead reduction can be carried out by reducing the number of query-response packets. This will reduce the packet processing overhead and to some extent the bandwidth.

The payloads in a typical SNMP "get" packet and the corresponding response are as shown in Fig. 1. In the example shown in the figure polling is carried out for 'n' Managed Objects (MOs) OID1, OID2, ..., OIDn. It is obvious that a substantial amount of the payload in an SNMP packet consists of the OIDs. In [ODC-Dft] OID compression has been proposed by using the OID Delta Compression mechanism.

In this draft a mechanism of MO aggregation for payload compression is defined. In this mechanism the user defines a new MO - an aggregate MO corresponding to one or more predefined MOs. Semantically, the aggregate MO will be equivalent to the concatenation of the ascii text value of the (user) specified MOs separated by a (user) specified separator. We will call this MO-based aggregation.

In another mode of usage the aggregate MOs may be defined so that they represent the ascii values of a (user) specified MO polled at (user) specified intervals for a (user) specified number of times, each value separated by a (user) specified separator. We will call this time-based aggregation.

The concept is explained in Fig. 2. An aggregate managed object OIDx has been defined. The value of OIDx will be a concatenation of the values of OID1, ... OIDn each separated by the specified separator, in that order.
Polling for primary MOs [OID1, OID2, ... OIDn]:

Query: | Get req | OID1 | NULL | | OIDn | NULL |
 +------------+-------+ +------------+-------+

Response: | Get resp | OID1 | Val1 | | OIDn | Valn |
 +------------+-------+ +------------+-------+

Fig. 1 Polling for primary MOs

Polling for an aggregate MO [OIDx]:
OIDx = aggr{OID1, OID2,OIDn, separator = ','}

Query: | Get req | OIDx | NULL |
 +------------+-------+

Response: | Get resp | OIDx | Val1,Val2,...,Valn |
 +------------+-------+

Fig. 2 MO-based aggregation

Polling for an aggregate MO [OIDx]:
OIDx = aggr{'n' polled samples of OID at intervals = 't', separator = ','}

Query: | Get req | OIDx | NULL |
 +------------+-------+

Response: | Get resp | OIDx | t,Val(t),Val(t+i),...,Val(t + n-1)*i |
 +------------+-------+

Fig. 3 Time-based aggregation
Fig. 3 shows the concept of time-based aggregation. The aggregate MO OIDx aggregates the ‘n’ consecutive samples of OID at intervals indicating the start time at which the first sampling was done.

An aggregate object will generally have a large size and may be optionally compressed to achieve further compression, albeit at the cost of a few more cpu cycles.

This mechanism does not require any change to the SNMP framework. It will require additional instrumentation at the command generator and command responder.
2. The SNMP Management Framework

The SNMP Management Framework presently consists of five major components:

- An overall architecture, described in RFC 2571 [RFC2571].
- Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIv1 and described in STD 16, RFC 1155 [RFC1155], STD 16, RFC 1212 [RFC1212] and RFC 1215 [RFC1215]. The second version, called SMIv2, is described in STD 58, RFC 2578 [RFC2578], RFC 2579 [RFC2579] and RFC 2580 [RFC2580].
- Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and described in STD 15, RFC 1157 [RFC1157]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and described in RFC 1901 [RFC1901] and RFC 1906 [RFC1906]. The third version of the message protocol is called SNMPv3 and described in RFC 1906 [RFC1906], RFC 2572 [RFC2572] and RFC 2574 [RFC2574].
- Protocol operations for accessing management information. The first set of protocol operations and associated PDU formats is described in STD 15, RFC 1157 [RFC1157]. A second set of protocol operations and associated PDU formats is described in RFC 1905 [RFC1905].
- A set of fundamental applications described in RFC 2573 [RFC2573] and the view-based access control mechanism described in RFC 2575 [RFC2575].

A more detailed introduction to the current SNMP Management Framework can be found in RFC 2570 [RFC2570].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the mechanisms defined in the SMI.

This memo specifies a MIB module that is compliant to the SMIv2. A MIB conforming to the SMIv1 can be produced through the appropriate translations. The resulting translated MIB must be semantically equivalent, except where objects or events are omitted because no translation is possible (use of Counter64). Some machine readable information in SMIv2 will be converted into textual descriptions in SMIv1 during the translation process. However, this loss of machine
readable information is not considered to change the semantics of the MIB.

3. The Requirements for Managed Object aggregation

The general requirements of managed object aggregation are as follows:

- It should lead to lesser number of packets
- It should lead to lesser bandwidth consumption

It should not
- lead to loss of information

In case of time-based aggregation there may be a delay involved in getting the actual data. The minimum delay in this case will be the duration of the aggregation.

4. MIB Design.

The basic principle has been to keep the MIB as simple as possible and at the same time to make it flexible enough so that a large number of users and applications can use the MIB to configure aggregate MOs conveniently.

The MIB comprises of three tables described below.
- The aggrMOTable defines the primary MO-based aggregation i.e. the MOs that will be aggregated.
- The aggrTSAttrsTable controls the aggregation process. Each row in this table defines the attributes of aggregate object defined in the aggrMOTable.
- The aggrTSDataTable contains the details of the aggregated object.

The size of the table may be decided by implementations.
5. The Managed Object Aggregation MIB.

AGGREGATE-MIB DEFINITIONS ::= BEGIN
IMPORTS
 MODULE-IDENTITY, Counter32, Gauge32, OBJECT-TYPE,
 OBJECT-IDENTITY FROM SNMPv2-SMI
 RowStatus FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB;

aggrMIB MODULE-IDENTITY
LAST-UPDATED "200111160000Z" -- 14th November 2001
ORGANIZATION "Cyber Solutions NetMan Working Group"
CONTACT-INFO
 "Glenn Mansfield
 Postal: Cyber Solutions Inc.
 6-6-3, Minami Yoshinari
 Aoba-ku, Sendai, Japan 989-3204.
 Tel: +81-22-303-4012
 Fax: +81-22-303-4015
 E-mail: glenn@cysols.com

 Support Group E-mail: mibsupport@cysols.com"
DESCRIPTION
 "The MIB for servicing aggregate objects."
 ::= { experimental nnn } -- will be assigned by IANA

AggrMOValue ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
 "This data type is used to model the aggregate
 MOs. It will have a format dependent on the
 type of aggregation that is being carried out.
 for MO-based aggregation the format will be
 <separator><value><separator>....<value><separator>
 for time-based aggregation
 <timestamp><space><value><separator>....<value><separator>
 Note:
 o The command generator is expected to know
 - the MO(s) that are being aggregated and,
 - the length of the aggregation

Expires: May 13, 2002
to be able to correctly interpret the constants of this data type.
- The values are ordered according to increasing order of aggrMOEntryID of the corresponding MOs in the aggrMOTable
- That the TimeStamp is not present for MO-based aggregation [aggrTSLength <= 1].

SYNTAX OCTET STRING (SIZE (0..1024))

CompressedAggrMOValue ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "This data type is used to model the compressed aggregate MOs."
SYNTAX OCTET STRING (SIZE (0..1024))

-- The aggregation control table
-- There will a row for each aggregate MO defined in the
-- aggrMOTable. It drives the time-based aggregation.
-- The attributes in a row pertain to the aggregation
-- time samples of the corresponding MOs defined in the
-- aggrMOTable.

aggrTSAttrsTable OBJECT-TYPE
SYNTAX SEQUENCE OF AggrAttrsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A table that controls the aggregation of the MOs."
 ::= {aggrMIB 1}

AggrAttrsEntry ::= SEQUENCE {
 aggrTSEntryID INTEGER,
 aggrTSMOIndex INTEGER,
 aggrTSOObjectDescr
}
SnmpAdminString,
aggrTSLength Gauge32,
aggrTSInterval Gauge32,
aggrTSSeparator INTEGER,
aggrTSCompressionAlgorithm INTEGER,
aggrTSEntryStatus RowStatus
}

aggrTSEntryID OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
" An Index uniquely identifying the attributes in this row."
 ::= { aggrTSArrtrsEntry 1 }

aggrTSMOIndex OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
" A pointer to a group of MOs identified by aggrMOEntryID in the aggrMOTable. This is the group of MOs that will be aggregated."
 ::= { aggrTSArrtrsEntry 2 }

aggrTSObjectDescr OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(0..64))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
" A textual description of the object that is being aggregated."
 ::= {aggrTSArrtrsEntry 3}

aggrTSLength OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
" The number of times the group of MO(s) pointed at by the aggrTSObject will be sampled and aggregated."
aggrTSInterval OBJECT-TYPE
 SYNTAX Gauge32
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The interval at which the group of MO(s) pointed at by
 aggrTSOBJECT, will be sampled for time-based
 aggregation. If the aggrTILENGTH = 1 then this
 field is irrelevant."

aggrTSSeparator OBJECT-TYPE
 SYNTAX INTEGER {
 none (1),
 comma (2),
 period (3),
 slash (4),
 space (5),
 colon (6),
 semicolon (7),
 dash (8),
 underbar (9)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The separator that will be used to separate
 the sampled values of the group of MO(s) pointed at by
 aggrTSOBJECT."

aggrTSCompressionAlgorithm OBJECT-TYPE
 SYNTAX INTEGER {
 none (1)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The Compression algorithm that will be used by
 the agent to compress the aggregated object."

aggrTSEntryStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
DESCRIPTION
"The row status variable, used according to row
installation and removal conventions."
::= {aggrTSAttrsEntry 8}

--
-- The Table of primary managed MOs
-- Each row in this table represents a primary MO which will be
-- aggregated. The aggrMOEntryID index is used to identify the
-- group of MOs that will be aggregated. The aggrMOEntryMOID
-- index is used to identify an MO in the group.
--
aggrMOTable OBJECT-TYPE
SYNTAX SEQUENCE OF AggrMOEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of the MOs that will be aggregated."
::= {aggrMIB 2}

aggrMOEntry OBJECT-TYPE
SYNTAX AggrMOEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A row of the table that specifies one MO."
INDEX { aggrMOEntryID, aggrMOEntryMOID }
::= {aggrMOTable 1 }

AggrMOEntry ::= SEQUENCE {
aggrMOEntryID
 INTEGER,
aggrMOEntryMOID
 INTEGER,
aggrMOObject
 INTEGER,
aggrMOObjectDescr
 SnmpAdminString,
aggrMOErrorIndicator
 INTEGER,
aggrMOSeparator
 INTEGER,
aggrMOEntryStatus
 RowStatus
}

aggrMOEntryID OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"An Index uniquely indentifying a group of MOs that will be aggregated."
::= { aggrMOEntry 1 }

aggrMOEntryMOID OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"An Index uniquely the MOs in the group of MOs that will be aggregated."
::= { aggrMOEntry 2 }

aggrMOObject OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The OID of the MO - the value of which will being sampled by the agent. Note. this must be a leaf OID."
::= { aggrMOEntry 3 }

aggrMOObjectDescr OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(0..64))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A textual description of the object that will be aggregated."
::= {aggrMOEntry 4}

aggrMOErrorIndicator OBJECT-TYPE
SYNTAX INTEGER {
 null (1),
 space (2),
 minusOne (3),
 hyphen (4),
 underbar (5)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"An indicator that there was a problem in getting
the value of this MO.
::= {aggrMOEntry 5}

aggrMOSeparator OBJECT-TYPE
SYNTAX INTEGER {
 none (1),
 comma (2),
 period (3),
 slash (4),
 space (5),
 colon (6),
 semicolon (7),
 dash (8),
 underbar (9)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The separator that will be used to separate
the sampled values of the group of MOs identified by
the aggrMOEntryID.
Note that this separator should be
separate from the separator used in the time-based
aggregation of the groups specified in this table."
::= {aggrMOEntry 6}

aggrMOEntryStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The row status variable, used according to row
installation and removal conventions."
::= {aggrMOEntry 7}

--
-- The Aggregated MOs
--
aggrDataGroup OBJECT-IDENTITY
STATUS current
DESCRIPTION
"This is the base object for the subtree of
data objects."
::= {aggrMIB 3}

--
-- aggrDataTable: The Table of Data. Each row represents a Data set.
-- aggrTSEntryID, aggrDataID is the key to the table. The number of
-- instances of aggrDataID for each aggrTSEntryID determines the number
-- of instances of the aggregated MO that will be present in the table.
-- The size of will be implementation dependent - some implementors may
-- choose to keep a maximum of one messages in this table (only the
-- most recent snapshot of the aggregated MO will be serviced).

aggrDataTable OBJECT-TYPE
SYNTAX SEQUENCE OF AggrDataEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
" Each row of this table contains information
about a data indexed by aggrTSDataID."
::= {aggrDataGroup 1 }

aggrDataEntry OBJECT-TYPE
SYNTAX AggrDataEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
" Entry containing information pertaining
an aggregate MO."
INDEX {aggrTSEntryID, aggrDataID}
::= {aggrDataTable 1 }

AggrDataEntry ::= SEQUENCE {
 aggrDataID
 INTEGER,
 aggrDataRec
 AggrMOValue,
 aggrDataRecC
 CompressedAggrMOValue
}

aggrDataID OBJECT-TYPE
SYNTAX INTEGER (1..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" This along with the aggrTSEntryID uniquely
identifies a snapshot value of an aggregate MO."
::= {aggrDataEntry 1}

aggrDataRec OBJECT-TYPE
SYNTAX AggrMOValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The snapshot value of the aggregated MO."
aggrDataRecC OBJECT-TYPE
SYNTAX CompressedAggrMOValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The compressed value of the aggregated MO."
 ::= { aggrDataEntry 3}

-- Conformance information
aggrConformance OBJECT IDENTIFIER ::= { aggrMIB 3 }
aggrGroups OBJECT IDENTIFIER ::= { aggrConformance 1 }
aggrCompliances OBJECT IDENTIFIER ::= { aggrConformance 2 }

-- Compliance statements
aggrDataCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for SNMP entities
which implement the AGGREGATE-MIB."

MODULE -- this module
MANDATORY-GROUPS { aggrDataGroup }
 ::= { aggrCompliances 1 }

-- Units of conformance
aggrDataGroup OBJECT-GROUP
OBJECTS {
 aggrTSEntryID,
 aggrTSMOIndex,
 aggrTSObjectDescr,
 aggrTSLength,
 aggrTSInterval,
 aggrTSSeparator,
 aggrTSCompressionAlgorithm,
 aggrTSEntryStatus,
 aggrMOEntryID,
 aggrMOEntryMOID,
 aggrMOObject,
 aggrMOObjectDescr,
 aggrMOErrorIndicator,
 aggrMOSeparator,
 aggrMOEntryStatus,
 aggrDataID,
 aggrDataRec,
 aggrDataRecC
}

STATUS current
DESCRIPTION
"A collection of objects for aggregation of MOs."
 ::= { aggrGroups 1 }
6. Intellectual Property

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF’s procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

7. Acknowledgements

This draft is the product of discussions and deliberations carried out in the WIDE-netman group.
References

[ODC-Dft] Schoenwaelder, J. "SNMP Payload Compression", Work In Progress

Protocol (SNMPv3)”, RFC 2574, April 1999

Security Considerations

There are management objects defined in this MIB that have a MAX-ACCESS clause of read-write and read-create. There is the risk that an intruder can alter or create any management objects of this MIB via direct SNMP SET operations. So, care must be taken to put in place the security provisions of SNMP for authentication and access control. Not all versions of SNMP provide features for such a secure environment.

SNMPv1 by itself is such an insecure environment. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET (read) and SET (write) the objects in this MIB.

It is strongly recommended that the implementors consider the security features as provided by the SNMPv3 framework. Specifically, the use of the User-based Security Model RFC 2274 [RFC2274] and the View-based Access Control Model RFC 2275 [RFC2275] is recommended.

It is then a customer/user responsibility to ensure that the SNMP entity giving access to an instance of this MIB, is properly configured to give access to those objects only to those principals (users) that have legitimate rights to access them.
Authors’ Addresses

Glenn Mansfield
Cyber Solutions Inc.
6-6-3 Minami Yoshinari
Aoba-ku, Sendai 989-3204
Japan

Phone: +81-22-303-4012
EMail: glenn@cysols.com
Full Copyright statement

"Copyright (C) The Internet Society (date). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."