The Managed Object Aggregation MIB
<draft-glenn-mo-aggr-mib-08.txt>

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

Comments are solicited and should be addressed to the author.

This Internet-Draft will expire on June 24, 2006.

Copyright Notice

Copyright (C) The Internet Society (2005).
Abstract

This memo defines a portion of the Management Information Base (MIB), the Aggregation MIB modules, for use with network management protocols in the Internet community. In particular, the Aggregation MIB modules will be used to configure a network management agent to aggregate the values of a (user) specified set of Managed Object instances and to service queries related to the aggregated Managed Object instances.

Table of Contents

1. The Internet-Standard Management Framework 3
2. Background .. 3
3. MO Aggregation: The Concept 4
4. The Requirements for Managed Object Aggregation 7
5. MIB Design ... 8
6. The Aggregation MIB modules 9
7. Security Considerations .. 30
8. IANA Considerations .. 32
9. References ... 32
10. Acknowledgments .. 33
11. Authors’ Addresses ... 33
12. Full Copyright Statement .. 34
1. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP).

Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [RFC2119].

2. Background

For the purpose of management it is necessary to access Managed Objects (MOs). The SNMP framework provides a mechanism for naming and describing managed objects. These objects are accessed via a virtual information store termed a Management Information Base (MIB). MIBs have been defined by equipment, protocol and application developers to provide management access to the managed entities. We will call the MOs defined in these MIBs - simple MOs (SMO). Management applications will access one or more instances of these SMOs, one or more times, to monitor the target entity.

There is a cost associated with accessing MOs. The cost is the network bandwidth and the packet header processing overhead at the command generator (manager) and the command responder (agent). This cost constrains the number of MO instances that can be polled and the interval at which polling can be carried out.

The overhead reduction can be carried out by reducing the number of query-response packets. This will reduce the packet processing overhead and to some extent the bandwidth.

The payload in a typical SNMP "get" packet and the corresponding response are as shown in Fig. 1. In this example polling is carried out for 'n' Managed Object instances OID1, OID2, .., OIDn. It is obvious that a substantial amount of the payload in an SNMP packet consists of the OIDs.
3. MO Aggregation: The Concept

In this draft, a mechanism of MO aggregation for payload compression is defined. The idea is simple: we introduce the concept of an Aggregate MO (AgMO). An AgMO is just another MO as far as the SNMP protocol is concerned. No new protocol operations will be required to handle these MOs. As in the case of any other MO, it requires additional instrumentation at the command responder (agent) and at the (command generator) manager. In this mechanism the user defines an Aggregate MO (AgMO) corresponding to one or more (predefined) MO instances. Semantically, the value of an AgMO instance will be equivalent to the concatenation of the values of the corresponding MO instances. The order of the concatenation will be determined by the order in which the MO instances are specified in the AgMO definition. With the definitions done, the user can, as and when the necessity arises, do an SNMP ‘get’ on instances of the AgMO to fetch the value of the constituent MO instances. There is substantial savings on bandwidth as only one instance object identifier is carried in the request and the response. In the normal case, instance object identifiers for each of the constituent MO instances would be carried in the requests and the responses. This is the basic concept of Aggregate Managed Objects. For every AgMO an ErrorStatus Managed Object is defined. This MO indicates errors, if any, that has been encountered while fetching the values of the constituent MO instances. The error indication comprises of the index of the MO instance and the corresponding error. If there are no errors the ErrorStatus Managed Object instance will have a null value. This is the basic concept of Aggregate Managed Objects.

The concepts are explained in Fig. 2. An aggregate managed object AgMOx has been defined for MO instances MOI1, ... MOIn. The value of an instance of AgMOx will be a concatenation of the values of MOI1, ... MOIn, in that order.

Polling for MO Instances [MOI1, MOI2, ... MOIn] :

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Query:</td>
<td>Response:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Get req</td>
<td>MOI1</td>
<td>NULL</td>
<td>MOIn</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
```

Fig. 1 Polling for MO instances
Polling for an instance (AgMOIx) of an aggregate MO (AgMOx):
AgMOx = aggr{AgMOI1, AgMOI2,AgMOIn}

Query: | Get req | AgMOIx | NULL |
--------+--------+-------+

Response: | Get resp| AgMOIx | Val1,Val2,...,Valn |
----------+--------+------------------------+

Fig. 2 MO aggregation

As a further refinement of the AgMO, we introduce the Time-based Aggregated Managed Object (TAgMO). The TAgMO is an MO that represents the values of a (user) specified MO instance sampled at (user) specified intervals for a (user) specified number of times. In this case the user defines a TAgMO by specifying the MO instance that needs to be sampled, the sampling interval and the desired number of samples that will be included in one TAgMO. The value of a TAgMO instance will include the timestamp (sysUpTime) at which the first sample was taken. The start time is not specified when the TAgMO is defined. Implementations may choose to align the start time with the appropriate time boundaries (e.g. seconds, minutes, hours etc.) With the definitions done the user can do an SNMP "get" on an instance of the TAgMO to fetch the values of the constituent MO instance sampled at the specified intervals. This is the concept of time-based aggregation.
Polling for ‘n’ samples of an MO Instance [MOI] at an interval ‘i’:

<table>
<thead>
<tr>
<th>Query</th>
<th>Time</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>+--------+-----+-----------+</td>
<td>t</td>
<td>+-----------------+</td>
</tr>
<tr>
<td></td>
<td>Get req</td>
<td>MOI</td>
</tr>
<tr>
<td>+--------+-----+-----------+</td>
<td></td>
<td>+-----------------+</td>
</tr>
<tr>
<td></td>
<td>Get req</td>
<td>MOI</td>
</tr>
<tr>
<td>+--------+-----+-----------+</td>
<td></td>
<td>Get resp</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>+-----------------+</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+--------+-----+-----------+</td>
<td>t+(n-1)i</td>
<td></td>
</tr>
<tr>
<td>+--------+-----+-----------+</td>
<td></td>
<td>+-----------------+</td>
</tr>
</tbody>
</table>

Fig. 3 Periodic polling for samples of an MO instance

Polling for an instance (TAgMOIx) of a time-based aggregate MO (TAgMOx):

TAgMOx = aggr{‘n’ polled samples of an instance (MOI) of MO at intervals = ‘i’ microseconds}

<table>
<thead>
<tr>
<th>Query</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+-----------------+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Get req</td>
<td>TAgMOIx</td>
</tr>
<tr>
<td>+-----------------+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response:</th>
<th>Get resp</th>
<th>TAgMOIx</th>
<th>t,Val(t),Val(t+i),..,Val(t +(n-1)*i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+--------+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4 Time-based aggregation

The TAgMO instance is a "bucket" of data representing the value of the corresponding MO instance sampled at ‘i’ microsecond intervals, ‘n’ times i.e. over a ‘n’ X ‘i’ microsecond window. The TAgMO instance value gets updated at ‘n’ X ‘i’ microsecond intervals.
4. The Requirements for Managed Object Aggregation

The general requirements of managed object aggregation are as follows:

- It should lead to lesser number of packets
- It should lead to lesser bandwidth consumption
- It should not lead to loss of information

In the case of time-based aggregation there will be a delay involved in getting the actual data. The minimum delay in this case will be the duration of the aggregation.

The manager application is expected to configure AgMOs (Aggregate MOs) and TAgMOs (Time based Aggregate MOs) with care so that the response size is not too large. In case the resultant response size is larger than the maximum acceptable message size of the originator or larger than the local maximum message size then the error-status field will be set to "tooBig".

It must be noted that an aggregate MO can be defined only when all the constituent MO instances of interest are known. This scheme cannot be employed if a manager/application does not know the specific MO instances (of interest) that are serviced by the management target. In such cases, the application may "discover" the MO instances of interest by some means e.g. by "walking" through the MIB tree on the agent. Based on the results of the "walk", the application can define an appropriate aggregate MO that will serve the purpose. Considering the cost involved in this exercise, this method is recommended only if the aggregate MO will be used repeatedly, so that the benefits of aggregation outweigh the costs of configuration.
5. MIB Design.

The basic principle has been to keep the MIB as simple as possible and at the same time to make it flexible enough so that a large number of users and applications can use the MIB to configure aggregate MOs conveniently.

Two separate MIB modules have been defined. The AggrMIB supports the aggregation of independent MO instances while TAggrMIB supports the aggregation of several samples of the same MO instance. Both the MIB modules use the textual conventions defined in RMON-MIB[RFC2819] and SNMP-FRAMEWORK-MIB[RFC3411].

The AggrMIB comprises of three tables described below.
- The aggrCtlTable controls the aggregation process. Each row in this table defines the attributes of aggregate object defined in the aggrMOTable.

- The aggrMOTable defines the primary MO-based aggregation i.e. the MOs that will be aggregated.

- The aggrDataTable contains the details of the aggregated object.

The TAggrMIB comprises of two tables described below.
- The tAggrCtlTable controls the aggregation process. Each row in this table defines the attributes of the aggregate object defined in the aggrMOTable.

- The tAggrDataTable contains the details of the aggregated object.
6. The Aggregation MIB modules.

AGGREGATE-MIB DEFINITIONS ::= BEGIN
IMPORTS
 MODULE-IDENTITY, experimental, Unsigned32,
 OBJECT-TYPE, Opaque
 FROM SNMPv2-SMI
 OwnerString
 FROM RMON-MIB
 RowStatus, StorageType, TEXTUAL-CONVENTION
 FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB;

aggrMIB MODULE-IDENTITY
 LAST-UPDATED "200512250000Z" -- 25th December, 2005
 ORGANIZATION "Cyber Solutions Inc. NetMan Working Group"
 CONTACT-INFO
 Glenn Mansfield Keeni
 Postal: Cyber Solutions Inc.
 6-6-3, Minami Yoshinari
 Aoba-ku, Sendai, Japan 989-3204.
 Tel: +81-22-303-4012
 Fax: +81-22-303-4015
 E-mail: glenn@cysols.com

Support Group E-mail: mibsupport@cysols.com"

DESCRIPTION
 " The MIB for servicing aggregate objects.

 Copyright (C) The Internet Society (2005). This version of this MIB module is part of RFC XXXX; see the RFC itself for full legal notices.
"

-- RFC Ed.: replace XXXX with the actual RFC number & remove this
-- note

REVISION "200512250000Z" -- 25th December, 2005
DESCRIPTION "Initial version, published as RFC XXXX."

-- RFC Ed.: replace XXXX with the actual RFC number & remove this
-- note

::= { experimental xxx } -- will be assigned by IANA

Expires: June 24, 2006
-- IANA Reg.: Please assign a value for "xxx" under the
-- 'experimental' subtree and record the assignment in the SMI
-- Numbers registry.

-- RFC Ed.: When the above assignment has been made, please
-- remove the above note
-- replace "xxx" here with the assigned value and
-- remove this note.

AggrMOErrorStatus ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This data type is used to model the error status of the
constituent MO instances. The error status for a
constituent MO instance is given in terms of two elements -
o the moIndex which indicates the position of the MO
instance (starting at 1) in the value of the aggregated
MO instance.
o the moError which indicates the error that was
encountered in fetching that MO instance.
The syntax in ASN.1 Notation will be
ErrorStatus ::= SEQUENCE {
 moIndex Integer32,
 moError SnmpPduErrorStatus
}
AggrMOErrorStatus ::= SEQUENCE OF {
 ErrorStatus
}
Note1: the command responder will supply values for all
constituent MO instances and in the same order in
which the MO instances are specified for the AgMO.
If an error is encountered for an MO instance then
the corresponding value will have an ASN.1 value NULL
and, an error flagged in the corresponding
AggrMOErrorStatus object.
Only MOs for which errors have been encountered will
have the corresponding moIndex and moError values set.

Note2: the error code for the component MO instances will be
in accordance with the SnmpPduErrorStatus TC defined
in the DISMAN-SCHEDULE-MIB[RFC3231].

Note3: the command generator will need to know
constituent MO instances and their order to correctly
interpret AggrMOErrorStatus.
"

SYNTAX Opaque (SIZE (0..1024))
AggrMOValue ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "This data type is used to model the aggregate
MOs. It will have a format dependent on the constituent
MOs, a sequence of values. The syntax in ASN.1 Notation will be
MOValue ::= SEQUENCE {
 value ObjectSyntax
}
Where, 'value' is the value of a constituent MO instance.
AggrMOValue ::= SEQUENCE OF {
 MOValue
}

Note: the command generator will need to know the
the constituent MO instances and their order to
correctly interpret AggrMOValue."
SYNTAX Opaque (SIZE (0..1024))

AggrMOCompressedValue ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "This data type is used to model the compressed
aggregate MOs."
SYNTAX OCTET STRING (SIZE (0..1024))

--
-- The aggregation control table
-- There will be a row for each aggregate MO
--
aggrCtlTable OBJECT-TYPE
SYNTAX SEQUENCE OF AggrCtlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION " A table that controls the aggregation of the MOs."
 ::= {aggrMIB 1}
aggrCtlEntry OBJECT-TYPE
SYNTAX AggrCtlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A row of the control table that defines one aggregated MO.
Entries in this table are required to survive a reboot of the managed entity depending on the value of the corresponding aggrCtlEntryStorageType instance."
INDEX {aggrCtlEntryID }
::= {aggrCtlTable 1 }

AggrCtlEntry ::= SEQUENCE {
 aggrCtlEntryID
 SnmpAdminString,
 aggrCtlMOIndex
 Unsigned32,
 aggrCtlMODescr
 SnmpAdminString,
 aggrCtlCompressionAlgorithm
 INTEGER,
 aggrCtlEntryOwner
 OwnerString,
 aggrCtlEntryStorageType
 StorageType,
 aggrCtlEntryStatus
 RowStatus
}

aggrCtlEntryID OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(1..32))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A locally-unique administratively assigned name for this aggregated MO. It is used as an index to uniquely identify this row in the table."
::= { aggrCtlEntry 1 }
aggrCtlMOIndex OBJECT-TYPE
SYNTAX Unsigned32 (1..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A pointer to a group of MOs identified by aggrMOEntryID
in the aggrMOTable. This is the group of MOs that will
be aggregated."
 ::= { aggrCtlEntry 2 }

aggrCtlMODescr OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(0..64))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A textual description of the object that is
being aggregated."
 ::= { aggrCtlEntry 3 }

-- only one compression algorithm is defined as of now.
aggrCtlCompressionAlgorithm OBJECT-TYPE
SYNTAX INTEGER {
 none (1),
 deflate (2)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The compression algorithm that will be used by
the agent to compress the value of the aggregated
object.
The deflate algorithm and corresponding data format
specification is described in RFC1951. It is
compatible with the widely used gzip utility.
"
REFERENCE
"RFC1951 : DEFLATE Compressed Data Format Specification
version 1.3"

DEFVAL { none }
 ::= { aggrCtlEntry 4 }
aggrCtlEntryOwner OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The entity that created this entry."
::= {aggrCtlEntry 5}

aggrCtlEntryStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object defines whether the parameters defined in
this row are kept in volatile storage and lost upon
reboot or are backed up by non-volatile (permanent)
storage.

Conceptual rows having the value "permanent" need not
allow write-access to any columnar objects in the row.
"
::= {aggrCtlEntry 6}

aggrCtlEntryStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The row status variable, used according to row
installation and removal conventions.
Objects in a row can be modified only when the value of
this object in the corresponding conceptual row is not
"active".
Thus to modify one or more of the objects in this
conceptual row,
 a. change the row status to "notInService",
 b. change the values of the row
 c. change the row status to "active"
The aggrCtlEntryStatus may be changed to "active" iff
all the MOs in the conceptual row have been assigned
valid values.
"
::= {aggrCtlEntry 7}
-- The Table of primary(simple) MOs

aggrMOTable OBJECT-TYPE
SYNTAX SEQUENCE OF AggrMOEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The table of primary(simple) MOs that will be aggregated. Each row in this table represents a MO which will be aggregated. The aggrMOEntryID index is used to identify the group of MOs that will be aggregated. The aggrMOIndex instance in the corresponding row of the aggrCtlTable will have value equal to the value of aggrMOEntryID. The aggrMOEntryMOID index is used to identify an MO in the group."
::= {aggrMIB 2}

aggrMOEntry OBJECT-TYPE
SYNTAX AggrMOEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A row of the table that specifies one MO. Entries in this table are required to survive a reboot of the managed entity depending on the value of the corresponding aggrMOEntryStorageType instance."
INDEX { aggrMOEntryID, aggrMOEntryMOID }
::= {aggrMOTable 1 }

AggrMOEntry ::= SEQUENCE {
 aggrMOEntryID
 Unsigned32,
 aggrMOEntryMOID
 Unsigned32,
 aggrMOInstance
 OBJECT IDENTIFIER,
 aggrMODescr
 SnmpAdminString,
 aggrMOEntryStorageType
 StorageType,
 aggrMOEntryStatus
 RowStatus
}
aggrMOEntryID OBJECT-TYPE
SYNTAX Unsigned32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An index uniquely identifying a group of MOs that will be aggregated."
::= { aggrMOEntry 1 }

aggrMOEntryMOID OBJECT-TYPE
SYNTAX Unsigned32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An index to uniquely identify an MO instance in the group of MO instances that will be aggregated."
::= { aggrMOEntry 2 }

aggrMOInstance OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The OID of the MO instance - the value of which will be sampled by the agent."
::= { aggrMOEntry 3 }

aggrMODescr OBJECT-TYPE
SYNTAX SnmpAdminString {SIZE(0..64)}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A textual description of the object that will be aggregated."
::= {aggrMOEntry 4}
aggrMOEntryStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object defines whether the parameters defined in
 this row are kept in volatile storage and lost upon
 reboot or are backed up by non-volatile (permanent)
 storage. Conceptual rows having the value "permanent"
 need not allow write-access to any columnar objects in the row.""
 ::= {aggrMOEntry 5}

aggrMOEntryStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The row status variable, used according to row
 installation and removal conventions. Objects in a row can be modified only when the value of
 this object in the corresponding conceptual row is not
 "active". Thus to modify one or more of the objects in this
 conceptual row,
 a. change the row status to "notInService",
 b. change the values of the row
 c. change the row status to "active"
 The aggrMOEntryStatus may be changed to "active" iff
 all the MOs in the conceptual row have been assigned
 valid values."
 ::= {aggrMOEntry 6}
aggrDataTable OBJECT-TYPE
SYNTAX SEQUENCE OF AggrDataEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
' Each row of this table contains information about an aggregateMO indexed by aggrCtlEntryID.'
::= {aggrMIB 3}

aggrDataEntry OBJECT-TYPE
SYNTAX AggrDataEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
' Entry containing information pertaining to an aggregate MO.'
INDEX {aggrCtlEntryID}
::= {aggrDataTable 1 }

AggrDataEntry ::= SEQUENCE {
 aggrDataRecord
 AggrMOValue,
 aggrDataRecordCompressed
 AggrMOCompressedValue,
 aggrDataErrorRecord
 AggrMOErrorStatus
}

aggrDataRecord OBJECT-TYPE
SYNTAX AggrMOValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
'The snapshot value of the aggregated MO. Note that the access privileges to this object will be governed by the access privileges of the component objects. Thus, an entity attempting to access an instance of this MO MUST have access rights to all the component instance objects and this MO instance.'
::= { aggrDataEntry 1}
aggrDataRecordCompressed OBJECT-TYPE
SYNTAX AggrMOCompressedValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The compressed value of the aggregated MO.
The compression algorithm will depend on the
aggrCtlCompressionAlgorithm given in the corresponding
aggrCtlEntry. In case the value of the corresponding
aggrCtlCompressionAlgorithm is (1) ‘none’ then the value
of all instances of this object will be a string of zero
length.
Note that the access privileges to this object will be
governed by the access privileges of the component
objects. Thus, an entity attempting to access an instance
of this MO MUST have access rights to all the component
instance objects and this MO instance."
::= { aggrDataEntry 2}

aggrDataErrorRecord OBJECT-TYPE
SYNTAX AggrMOErrorStatus
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The error status corresponding to the MO instances
aggregated in aggrDataRecord (and
aggrDataRecordCompressed)."
::= { aggrDataEntry 3}

-- Conformance information
aggrConformance OBJECT IDENTIFIER ::= { aggrMIB 4 }
aggrGroups OBJECT IDENTIFIER ::= { aggrConformance 1 }
aggrCompliances OBJECT IDENTIFIER ::= { aggrConformance 2 }

-- Compliance statements
aggrMibCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for SNMP entities
which implement the
AGGREGATE-MIB."
MODULE -- this module
MANDATORY-GROUPS { aggrMibBasicGroup }
::= { aggrCompliances 1}
aggrMibBasicGroup OBJECT-GROUP

OBJECTS {
 aggrCtlMOIndex,
 aggrCtlMODescr,
 aggrCtlCompressionAlgorithm,
 aggrCtlEntryOwner,
 aggrCtlEntryStorageType,
 aggrCtlEntryStatus,
 aggrMOInstance,
 aggrMODescr,
 aggrMOEntryStorageType,
 aggrMOEntryStatus,
 aggrDataRecord,
 aggrDataRecordCompressed,
 aggrDataErrorRecord
}

STATUS current
DESCRIPTION
 "A collection of objects for aggregation of MOs."
::= { aggrGroups 1 }

END
TIME-AGGREGATE-MIB DEFINITIONS ::= BEGIN
IMPORTS
 MODULE-IDENTITY, experimental,
 OBJECT-TYPE, Opaque, Integer32
 FROM SNMPv2-SMI
 OwnerString
 FROM RMON-MIB
 RowStatus, StorageType, TEXTUAL-CONVENTION
 FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB;

tAggrMIB MODULE-IDENTITY
 LAST-UPDATED "200509160000Z" -- 16th September 2005
 ORGANIZATION "Cyber Solutions Inc. NetMan Working Group"
 CONTACT-INFO
 Glenn Mansfield Keeni
 Postal: Cyber Solutions Inc.
 6-6-3, Minami Yoshinari
 Aoba-ku, Sendai, Japan 989-3204.
 Tel: +81-22-303-4012
 Fax: +81-22-303-4015
 E-mail: glenn@cysols.com
 Support Group E-mail: mibsupport@cysols.com

DESCRIPTION
 " The MIB for servicing time-based Aggregate objects.

 Copyright (C) The Internet Society (2005). This version of this MIB module is part of RFC NNNN; see the RFC itself for full legal notices.
"

-- RFC Ed.: Please replace NNNN with actual RFC number & remove this note

REVISION "200509160000Z" -- 16th September, 2005
DESCRIPTION "Initial version, published as RFC NNNN."

-- RFC Ed.: Please replace NNNN with actual RFC number & remove this note

 ::= { experimental nnn } -- will be assigned by IANA
TAggrMOErrorStatus ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "This data type is used to model the error status of the sampled MO instance. The error status for a sampled MO instance is given in terms of two elements -
 o the moIndex which indicates the sample number of the MO instance (starting at 1) in the value of the time aggregated MO instance.
 o the moError which indicates the error that was encountered in sampling that MO instance.
 The syntax in ASN.1 Notation will be
 ErrorStatus ::= SEQUENCE {
 moIndex Integer32,
 moError SnmpPduErrorStatus
 }
 TAggrMOErrorStatus ::= SEQUENCE OF {
 ErrorStatus
 }
 Note1: the command responder will supply values for all the samples of the MO instance. If an error is encountered for a sample then the corresponding value will have an ASN.1 value NULL and, an error will be flagged in the corresponding TAggrMOErrorStatus object. Only MOs for which errors have been encountered will have the corresponding moIndex and moError values set.
 Note2: the error code for the component MO instances will be in accordance with the SnmpPduErrorStatus TC defined in the DISMAN-SCHEDULE-MIB[RFC3231]."
 SYNTAX Opaque (SIZE (0..1024))
TimeAggrMOValue ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "This data type is used to model the time aggregated MOs. It will be a sequence of values. The syntax in ASN.1 Notation will be
MOSampleValue ::= SEQUENCE {
 value ObjectSyntax
}
TimeAggrMOValue ::= SEQUENCE OF {
 MOSampleValue
}
Where, the first MOSampleValue, if any, will always be the timestamp of the first sample in the aggregated object. The subsequent values are the values of the MO instance sampled at the specified intervals for the specified number of times. Note: the command generator will need to know the constituent MO instance and the sampling interval to correctly interpret TimeAggrMOValue."
SYNTAX Opaque (SIZE (0..1024))

CompressedTimeAggrMOValue ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "This data type is used to model the compressed TAgMOs."
SYNTAX Opaque (SIZE (0..1024))

-- The time-based aggregation control table
--
tAggrCtlTable OBJECT-TYPE
SYNTAX SEQUENCE OF TAggrCtlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The time-based aggregation control table. It controls the aggregation of the samples of MO instances. There will be a row for each TAgMO."
::= {tAggrMIB 1}
tAggrCtlEntry OBJECT-TYPE
SYNTAX TAggrCtlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A row of the control table that defines one time-based
aggregate MO (TAgMO)."
INDEX {tAggrCtlEntryID }
 ::= {tAggrCtlTable 1 }

TAggrCtlEntry ::= SEQUENCE {
tAggrCtlEntryID
 SnmpAdminString,
tAggrCtlMOInstance
 OBJECT IDENTIFIER,
tAggrCtlAgMODescr
 SnmpAdminString,
tAggrCtlInterval
 Integer32,
tAggrCtlSamples
 Integer32,
tAggrCtlCompressionAlgorithm
 INTEGER,
tAggrCtlEntryOwner
 OwnerString,
tAggrCtlEntryStorageType
 StorageType,
tAggrCtlEntryStatus
 RowStatus
}

tAggrCtlEntryID OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(1..32))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
" A locally-unique administratively assigned name
 for this aggregated MO. It is used as an index to
 uniquely identify this row in the table."
 ::= { tAggrCtlEntry 1 }
tAggrCtlMOInstance OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
" The sampled values of this MO instance will be aggregated by the TAgMO."
 ::= { tAggrCtlEntry 2 }

tAggrCtlAgMODescr OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(0..64))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
" A textual description of the aggregate object."
 ::= {tAggrCtlEntry 3}

tAggrCtlInterval OBJECT-TYPE
SYNTAX Integer32
UNITS "micro seconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
" The interval in microseconds at which the MO instance pointed at by tAggrInstance, will be sampled for time-based aggregation."
 ::= {tAggrCtlEntry 4}

tAggrCtlSamples OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
" The number of times at which the MO instance referred to by tAaggrInstance, will be sampled for time-based aggregation."
 ::= {tAggrCtlEntry 5}
-- only one compression algorithm is defined as of now.
tAggrCtlCompressionAlgorithm OBJECT-TYPE
SYNTAX INTEGER {
 none (1),
 deflate (2)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
" The compression algorithm that will be used by
the agent to compress the value of the TAgMO.
The deflate algorithm and corresponding data format
specification is described in RFC1951. It is
compatible with the widely used gzip utility."
REFERENCE
"RFC1951 : DEFLATE Compressed Data Format Specification
version 1.3"
DEFVAL { none }
::= {tAggrCtlEntry 6}

tAggrCtlEntryOwner OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
" A textual description of the entity that created
this entry."
::= {tAggrCtlEntry 7}

tAggrCtlEntryStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object defines whether the parameters defined in
this row are kept in volatile storage and lost upon
reboot or are backed up by non-volatile (permanent)
storage.
Conceptual rows having the value ’’permanent’’ need not
allow write-access to any columnar objects in the row."
::= {tAggrCtlEntry 8}
tAggrCtlEntryStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The row status variable, used according to row installation and removal conventions. Objects in a row can be modified only when the value of this object in the corresponding conceptual row is not ‘‘active’’. Thus, to modify one or more of the objects in this conceptual row,
a. change the row status to ‘‘notInService’’,
b. change the values of the row
c. change the row status to ‘‘active’’
The tAggrCtlEntryStatus may be changed to ‘‘active’’ iff all the MOs in the conceptual row have been assigned valid values.
"
::= {tAggrCtlEntry 9}

--
-- tAggrDataTable: The data table.
--

tAggrDataTable OBJECT-TYPE
SYNTAX SEQUENCE OF TAggrDataEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
" This is the data table. Each row of this table contains information about a TAgMO indexed by tAggrCtlEntryID. tAggrCtlEntryID is the key to the table. It is used to identify instances of the TAgMO that are present in the table.
"
::= {tAggrMIB 2}
tAggrDataEntry OBJECT-TYPE
SYNTAX TAggrDataEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Entry containing information pertaining to a TAgMO."
INDEX {tAggrCtlEntryID}
::= {tAggrDataTable 1}

TAggrDataEntry ::= SEQUENCE {
tAggrDataRecord TimeAggrMOValue,
tAggrDataRecordCompressed CompressedTimeAggrMOValue,
tAggrDataErrorRecord TAggrMOErrorStatus
}

tAggrDataRecord OBJECT-TYPE
SYNTAX TimeAggrMOValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The snapshot value of the TAgMO."
::= {tAggrDataEntry 1}

tAggrDataRecordCompressed OBJECT-TYPE
SYNTAX CompressedTimeAggrMOValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The compressed value of the TAgMO.
The compression algorithm will depend on the tAggrCtlCompressionAlgorithm given in the corresponding tAggrCtlEntry. In case the value of the corresponding tAggrCtlCompressionAlgorithm is (1) ‘none’ then the value of all instances of this object will be a string of zero length.
Note that the access privileges to this object will be governed by the access privileges of the corresponding MO instance. Thus an entity attempting to access an instance of this MO MUST have access rights to the instance object pointed at by tAggrCtlMOInstance and this MO instance.
"
::= {tAggrDataEntry 2}
tAggrDataErrorRecord OBJECT-TYPE
SYNTAX TAggrMOErrorStatus
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The error status corresponding to the MO instance
samples aggregated in tAggrDataRecord (and
tAggrDataRecordCompressed)."
::= { tAggrDataEntry 3}

-- Conformance information

-- Compliance statements

-- Units of conformance

END
7. Security Considerations

There are management objects in the MIB modules defined in this document that have a MAX-ACCESS clause of read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. The objects and corresponding vulnerabilities are discussed below.

The following MOs are used to configure an agent that implements the aggregate MIB modules:

- aggrCtlMOIndex,
- aggrCtlMODescr,
- aggrCtlCompressionAlgorithm,
- aggrCtlEntryOwner,
- aggrCtlEntryStorageType,
- aggrCtlEntryStatus,
- aggrMOInstance,
- aggrMODescr,
- aggrMOEntryStorageType,
- aggrMOEntryStatus,
- tAggrCtlMOInstance,
- tAggrCtlAgMODescr,
- tAggrCtlInterval,
- tAggrCtlSamples,
- tAggrCtlCompressionAlgorithm,
- tAggrCtlEntryOwner,
- tAggrCtlEntryStorageType,
- tAggrCtlEntryStatus,

Access to these objects may be abused to affect the operation of the data collection system. In particular,

- by changing the value of an instance of aggrCtlEntryStatus, tAggrCtlEntryStatus, aggrMOEntryStatus or tAggrMOEntryStatus to ‘notInService’ or ‘destroy’, the data aggregation operation for the corresponding entry will become unavailable to the management system.
- by changing the value of an instance of aggrMOInstance or tAggrCtlMOInstance, the data aggregation operation may be subverted. This may result in wrong information being fed to the management system.
- by adding several rows in the aggrMOTable corresponding to an aggregate MO it is possible to make the value of the aggregate MOs very large. A similar effect may be achieved by manipulating the value of the tAggrCtlSamples instance corresponding to a time-based aggregate MO. This could result in very heavy management traffic and/or
fragmentation of response packets. In some cases the responder may refuse to send the data and will simply respond with an error message indicating that the response packet size is too big.

An entity attempting to access an instance of an aggregated MO MUST have access rights to all the component instance objects and the aggregate MO instance. Implementation MUST follow this requirement. Lax adherence to this requirement will breach the security model and make the system vulnerable to illegal accesses.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPSec), there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.
8. IANA Considerations

The MIB modules in this document use the following IANA-assigned OBJECT IDENTIFIER values recorded in the SMI Numbers registry:

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>OBJECT IDENTIFIER value</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggrMIB</td>
<td>{ experimental xxx }</td>
</tr>
<tr>
<td>tAggrMIB</td>
<td>{ experimental nnn }</td>
</tr>
</tbody>
</table>

IANA Reg.: Please assign a base arc each in the ‘experimental’ OID subtree for the ‘aggrMIB’ MODULE-IDENTITY and the ‘tAggrMIB’ MODULE-IDENTITY defined in the AGGREGATE-MIB and the TIME-AGGREGATE-MIB, respectively, and record the assignment in the SMI Numbers registry.

RFC Ed.: When the above assignments have been made, please
- remove the above note
- replace "xxx" and "nnn" here with the respective assigned values and
- remove this note.

9. References

9.1 Normative References

Informative References

10. Acknowledgments

This draft is the product of discussions and deliberations carried out in the WIDE-netman group. Bert Wijnen and Glenn Waters reviewed the document and provided valuable comments.

11. Authors’ Addresses

Glenn Mansfield Keeni
Cyber Solutions Inc.
6-6-3 Minami Yoshinari
Aoba-ku, Sendai 989-3204
Japan

Phone: +81-22-303-4012
EMail: glenn@cysols.com
12. Full Copyright Statement

Copyright (C) The Internet Society (2005).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgment

Funding for the RFC Editor function is currently provided by the Internet Society.
List of changes since draft-glenn-mo-aggr-mib-07.txt

a. Changed the DEFVAL spec from 'number' to 'name'
MO: aggrCtlCompressionAlgorithm
 old: DEFVAL { 1 }
 new: DEFVAL { none }

MO: tAggrCtlCompressionAlgorithm
 old: DEFVAL { 1 }
 new: DEFVAL { none }

b. Revised the Acknowledgments section.

List of changes since draft-glenn-mo-aggr-mib-06.txt

a. Changed the bounds of aggrMOEntryID
 old: aggrMOEntryID (1..65535)
 new: aggrMOEntryID (1..2147483647)

b. Revised the Acknowledgments section

List of changes since draft-glenn-mo-aggr-mib-05.txt

a. Revised Fig. 3 for Periodic polling
b. Added reference tags for
SNMP-FRAMEWORK-MIB[RFC3411]
RMON-MIB[RFC2819]

c. changed the prefix of the MOs in aggrCtlEntry
to aggrCtl

d. added a compression algorithm "deflate" to
 aggrCtlCompressionAlgorithm

e. moved the comments on aggrMOTable to the DESCRIPTION clause

f. changed the range of aggrMOEntryID and aggrMOEntryMOID
 from (0..65535) to (1..65535)

g. renamed aggrDataRec, aggrDataRecC, aggrErrorRec to
 aggrDataRecord, aggrDataRecordCompressed, aggrDataErrorRecord
 respectively.

h. revised the DESCRIPTION of aggrDataRecordCompressed to make
 the value a zero length string in case there is no compression.
 i. renamed aggrDataCompliance and aggrDataGroup to
 aggrMibCompliance and aggrMibBasicGroup, respectively.

j. Revised the DESCRIPTION of TimeAggrMOValue
 old: MOValue :: = SEQUENCE
 new: MOSampleValue :: = SEQUENCE
old: Where, the first MOSampleValue will always be the timestamp
new: Where, the first MOSampleValue, if any, will always be the
timestamp k. updated the DESCRIPTION of tAggrCtlTable l. renamed
the prefix of the MOs in tAggrCtlEntry to tAggrCtl m. added a
compression algorithm "deflate" to
tAggrCtlCompressionAlgorithm n. updated the DESCRIPTION of
tAggrDataTable o. renamed tAggrDataRec, tAggrDataRecC, tAggrErrorRec to
tAggrDataRecord, tAggrDataRecordCompressed, tAggrDataErrorRecord
respectively. p. revised the DESCRIPTION of
tAggrDataRecordCompressed to make
the value a zero length string in case there is no compression. q.
renamed tAggrDataCompliance and tAggrDataGroup to
tAggrMibCompliance and tAggrMibBasicGroup, respectively
r. added a paragraph about the strict accesscontrol requirements
for component MOs
s. Revised the IANA considerations section
t. Added references
 [RFC2119], [RFC2819], [RFC3411], [RFC1951]