Abstract

A deterministic network is one that can carry data flows for real-time applications with extremely low data loss rates and bounded latency. Deterministic networks have been successfully deployed in real-time operational technology (OT) applications for some years (for example [ARINC664P7]). However, such networks are typically isolated from external access, and thus the security threat from external attackers is low. IETF Deterministic Networking (DetNet) specifies a set of technologies that enable creation of deterministic networks on IP-based networks of potentially wide area (on the scale of a corporate network) potentially bringing the OT network into contact with Information Technology (IT) traffic and security threats that lie outside of a tightly controlled and bounded area (such as the internals of an aircraft). These DetNet technologies have not previously been deployed together on a wide area IP-based network, and thus can present security considerations that may be new to IP-based wide area network designers. This draft, intended for use by DetNet network designers, provides insight into these security considerations. In addition, this draft collects all security-related statements from the various DetNet drafts (Architecture, Use Cases, etc) into a single location Section 7.
Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 3, 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. 4
2. Abbreviations .. 5
3. Security Threats ... 6
 3.1. Threat Model .. 6
 3.2. Threat Analysis ... 7
 3.2.1. Delay ... 7
 3.2.1.1. Delay Attack 7
 3.2.2. DetNet Flow Modification or Spoofing 7
 3.2.3. Resource Segmentation or Slicing 7
 3.2.3.1. Inter-segment Attack 7
 3.2.4. Packet Replication and Elimination 8
 3.2.4.1. Replication: Increased Attack Surface 8
 3.2.4.2. Replication-related Header Manipulation 8
 3.2.5. Path Choice ... 8
3.2.5.1. Path Manipulation ... 8
3.2.5.2. Path Choice: Increased Attack Surface 9
3.2.6. Control Plane ... 9
 3.2.6.1. Control or Signaling Packet Modification 9
 3.2.6.2. Control or Signaling Packet Injection 9
3.2.7. Scheduling or Shaping 9
 3.2.7.1. Reconnaissance .. 9
3.2.8. Time Synchronization Mechanisms 9
3.3. Threat Summary .. 9

4. Security Threat Impacts .. 10
 4.1. Delay-Attacks .. 13
 4.1.1. Data Plane Delay Attacks 13
 4.1.2. Control Plane Delay Attacks 13
 4.2. Flow Modification and Spoofing 14
 4.2.1. Flow Modification 14
 4.2.2. Spoofing .. 14
 4.2.2.1. Dataplane Spoofing 14
 4.2.2.2. Control Plane Spoofing 14
 4.3. Segmentation attacks (injection) 15
 4.3.1. Data Plane Segmentation 15
 4.3.2. Control Plane segmentation 15
 4.4. Replication and Elimination 15
 4.4.1. Increased Attack Surface 15
 4.4.2. Header Manipulation at Elimination Bridges 16
 4.5. Control or Signaling Packet Modification 16
 4.6. Control or Signaling Packet Injection 16
 4.7. Reconnaissance .. 16
 4.8. Attacks on Time Sync Mechanisms 16
 4.9. Attacks on Path Choice 16

5. Security Threat Mitigation 16
 5.1. Path Redundancy .. 17
 5.2. Integrity Protection 17
 5.3. DetNet Node Authentication 17
 5.4. Encryption .. 18
 5.4.1. Encryption Considerations for DetNet 18
 5.5. Control and Signaling Message Protection 19
 5.6. Dynamic Performance Analytics 19
 5.7. Mitigation Summary 20

6. Association of Attacks to Use Cases 21
 6.1. Use Cases by Common Themes 21
 6.1.1. Network Layer - AVB/TSN Ethernet 22
 6.1.2. Central Administration 22
 6.1.3. Hot Swap .. 22
 6.1.4. Data Flow Information Models 23
 6.1.5. L2 and L3 Integration 23
 6.1.6. End-to-End Delivery 23
 6.1.7. Proprietary Deterministic Ethernet Networks 24
 6.1.8. Replacement for Proprietary Fieldbuses 24
Security is of particularly high importance in DetNet networks because many of the use cases which are enabled by DetNet [I-D.ietf-detnet-use-cases] include control of physical devices (power grid components, industrial controls, building controls) which can have high operational costs for failure, and present potentially attractive targets for cyber-attackers.
This situation is even more acute given that one of the goals of DetNet is to provide a "converged network", i.e. one that includes both IT traffic and OT traffic, thus exposing potentially sensitive OT devices to attack in ways that were not previously common (usually because they were under a separate control system or otherwise isolated from the IT network). Security considerations for OT networks is not a new area, and there are many OT networks today that are connected to wide area networks or the Internet; this draft focuses on the issues that are specific to the DetNet technologies and use cases.

The DetNet technologies include ways to:

- Reserve data plane resources for DetNet flows in some or all of the intermediate nodes (e.g. bridges or routers) along the path of the flow
- Provide explicit routes for DetNet flows that do not rapidly change with the network topology
- Distribute data from DetNet flow packets over time and/or space to ensure delivery of each packet’s data’ in spite of the loss of a path

This draft includes sections on threat modeling and analysis, threat impact and mitigation, and the association of attacks with use cases based on the Use Case Common Themes section of the DetNet Use Cases draft [I-D.ietf-detnet-use-cases].

This draft also provides context for the DetNet security considerations by collecting into one place Section 7 the various remarks about security from the various DetNet drafts (Use Cases, Architecture, etc). This text is duplicated here primarily because the DetNet working group has elected not to produce a Requirements draft and thus collectively these statements are as close as we have to "DetNet Security Requirements".

2. Abbreviations

- IT Information technology (the application of computers to store, study, retrieve, transmit, and manipulate data or information, often in the context of a business or other enterprise - Wikipedia).
- OT Operational Technology (the hardware and software dedicated to detecting or causing changes in physical processes through direct monitoring and/or control of physical devices such as valves, pumps, etc. - Wikipedia)
MITM Man in the Middle
SN Sequence Number

STRIDE Addresses risk and severity associated with threat categories: Spoofing identity, Tampering with data, Repudiation, Information disclosure, Denial of service, Elevation of privilege.

DREAD Compares and prioritizes risk represented by these threat categories: Damage potential, Reproducibility, Exploitability, how many Affected users, Discoverability.

PTP Precision Time Protocol [IEEE1588]

3. Security Threats

This section presents a threat model, and analyzes the possible threats in a DetNet-enabled network.

We distinguish control plane threats from data plane threats. The attack surface may be the same, but the types of attacks as well as the motivation behind them, are different. For example, a delay attack is more relevant to data plane than to control plane. There is also a difference in terms of security solutions: the way you secure the data plane is often different than the way you secure the control plane.

3.1. Threat Model

The threat model used in this memo is based on the threat model of Section 3.1 of [RFC7384]. This model classifies attackers based on two criteria:

- Internal vs. external: internal attackers either have access to a trusted segment of the network or possess the encryption or authentication keys. External attackers, on the other hand, do not have the keys and have access only to the encrypted or authenticated traffic.

- Man in the Middle (MITM) vs. packet injector: MITM attackers are located in a position that allows interception and modification of in-flight protocol packets, whereas a traffic injector can only attack by generating protocol packets.

Care has also been taken to adhere to Section 5 of [RFC3552], both with respect to what attacks are considered out-of-scope for this document, but also what is considered to be the most common threats (explored further in Section 3.2. Most of the direct threats to
DetNet are Active attacks, but it is highly suggested that DetNet application developers take appropriate measures to protect the content of the streams from passive attacks.

DetNet-Service, one of the service scenarios described in [I-D.varga-detnet-service-model], is the case where a service connects DetNet networking islands, i.e. two or more otherwise independent DetNet network domains are connected via a link that is not intrinsically part of either network. This implies that there could be DetNet traffic flowing over a non-DetNet link, which may provide an attacker with an advantageous opportunity to tamper with DetNet traffic. The security properties of non-DetNet links are outside of the scope of DetNet Security, but it should be noted that use of non-DetNet services to interconnect DetNet networks merits security analysis to ensure the integrity of the DetNet networks involved.

3.2. Threat Analysis

3.2.1. Delay

3.2.1.1. Delay Attack

An attacker can maliciously delay DetNet data flow traffic. By delaying the traffic, the attacker can compromise the service of applications that are sensitive to high delays or to high delay variation.

3.2.2. DetNet Flow Modification or Spoofing

An attacker can modify some header fields of en route packets in a way that causes the DetNet flow identification mechanisms to misclassify the flow. Alternatively, the attacker can inject traffic that is tailored to appear as if it belongs to a legitimate DetNet flow. The potential consequence is that the DetNet flow resource allocation cannot guarantee the performance that is expected when the flow identification works correctly.

3.2.3. Resource Segmentation or Slicing

3.2.3.1. Inter-segment Attack

An attacker can inject traffic, consuming network device resources, thereby affecting DetNet flows. This can be performed using non-DetNet traffic that affects DetNet traffic, or by using DetNet traffic from one DetNet flow that affects traffic from different DetNet flows.
3.2.4. Packet Replication and Elimination

3.2.4.1. Replication: Increased Attack Surface

Redundancy is intended to increase the robustness and survivability of DetNet flows, and replication over multiple paths can potentially mitigate an attack that is limited to a single path. However, the fact that packets are replicated over multiple paths increases the attack surface of the network, i.e., there are more points in the network that may be subject to attacks.

3.2.4.2. Replication-related Header Manipulation

An attacker can manipulate the replication-related header fields (R-TAG). This capability opens the door for various types of attacks. For example:

- **Forward both replicas** - malicious change of a packet SN (Sequence Number) can cause both replicas of the packet to be forwarded. Note that this attack has a similar outcome to a replay attack.

- **Eliminate both replicas** - SN manipulation can be used to cause both replicas to be eliminated. In this case an attacker that has access to a single path can cause packets from other paths to be dropped, thus compromising some of the advantage of path redundancy.

- **Flow hijacking** - an attacker can hijack a DetNet flow with access to a single path by systematically replacing the SNs on the given path with higher SN values. For example, an attacker can replace every SN value S with a higher value S+C, where C is a constant integer. Thus, the attacker creates a false illusion that the attacked path has the lowest delay, causing all packets from other paths to be eliminated. Once the flow is hijacked the attacker can either replace en route packets with malicious packets, or simply injecting errors, causing the packets to be dropped at their destination.

3.2.5. Path Choice

3.2.5.1. Path Manipulation

An attacker can maliciously change, add, or remove a path, thereby affecting the corresponding DetNet flows that use the path.
3.2.5.2. Path Choice: Increased Attack Surface

One of the possible consequences of a path manipulation attack is an increased attack surface. Thus, when the attack described in the previous subsection is implemented, it may increase the potential of other attacks to be performed.

3.2.6. Control Plane

3.2.6.1. Control or Signaling Packet Modification

An attacker can maliciously modify en route control packets in order to disrupt or manipulate the DetNet path/resource allocation.

3.2.6.2. Control or Signaling Packet Injection

An attacker can maliciously inject control packets in order to disrupt or manipulate the DetNet path/resource allocation.

3.2.7. Scheduling or Shaping

3.2.7.1. Reconnaissance

A passive eavesdropper can identify DetNet flows and then gather information about en route DetNet flows, e.g., the number of DetNet flows, their bandwidths, and their schedules. The gathered information can later be used to invoke other attacks on some or all of the flows.

Note that in some cases DetNet flows may be identified based on an explicit DetNet header, but in some cases the flow identification may be based on fields from the L3/L4 headers. If L3/L4 headers are involved, for purposes of this draft we assume they are encrypted and/or integrity-protected from external attackers.

3.2.8. Time Synchronization Mechanisms

An attacker can use any of the attacks described in [RFC7384] to attack the synchronization protocol, thus affecting the DetNet service.

3.3. Threat Summary

A summary of the attacks that were discussed in this section is presented in Figure 1. For each attack, the table specifies the type of attackers that may invoke the attack. In the context of this summary, the distinction between internal and external attacks is under the assumption that a corresponding security mechanism is being
used, and that the corresponding network equipment takes part in this mechanism.

<table>
<thead>
<tr>
<th>Attack</th>
<th>Attacker Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>MITM</td>
</tr>
</tbody>
</table>

Delay attack	+		+	
DetNet Flow Modification or Spoofing	+	+		
Inter-segment Attack	+	+		
Replication: Increased Attack Surface	+	+	+	+
Replication-related Header Manipulation	+			
Path Manipulation	+	+		
Path Choice: Increased Attack Surface	+	+	+	+
Control or Signaling Packet Modification	+			
Control or Signaling Packet Injection	+			
Reconnaissance	+		+	
Attacks on Time Sync Mechanisms	+	+	+	+

Figure 1: Threat Analysis Summary

4. Security Threat Impacts

This section describes and rates the impact of the attacks described in Section 3. In this section, the impacts as described assume that the associated mitigation is not present or has failed. Mitigations are discussed in Section 5.

In computer security, the impact (or consequence) of an incident can be measured in loss of confidentiality, integrity or availability of information.

DetNet raises these stakes significantly for OT applications, particularly those which may have been designed to run in an OT-only environment.
environment and thus may not have been designed for security in an IT environment with its associated devices, services and protocols.

The severity of various components of the impact of a successful vulnerability exploit to use cases by industry is available in more detail in [I-D.ietf-detnet-use-cases]. Each of the use cases in the DetNet Use Cases draft is represented in the table below, including Pro Audio, Electrical Utilities, Industrial M2M (split into two areas, M2M Data Gathering and M2M Control Loop), and others.

Components of Impact (left column) include Criticality of Failure, Effects of Failure, Recovery, and DetNet Functional Dependence. Criticality of failure summarizes the seriousness of the impact. The impact of a resulting failure can affect many different metrics that vary greatly in scope and severity. In order to reduce the number of variables, only the following were included: Financial, Health and Safety, People well being, Affect on a single organization, and affect on multiple organizations. Recovery outlines how long it would take for an affected use case to get back to its pre-failure state (Recovery time objective, RTO), and how much of the original service would be lost in between the time of service failure and recovery to original state (Recovery Point Objective, RPO). DetNet dependence maps how much the following DetNet service objectives contribute to impact of failure: Time dependency, data integrity, source node integrity, availability, latency/jitter.

The scale of the Impact mappings is low, medium, and high. In some use cases there may be a multitude of specific applications in which DetNet is used. For simplicity this section attempts to average the varied impacts of different applications. This section does not address the overall risk of a certain impact which would require the likelihood of a failure happening.

In practice any such ratings will vary from case to case; the ratings shown here are given as examples.

Table, Part One (of Two)

<table>
<thead>
<tr>
<th></th>
<th>Pro A</th>
<th>Util</th>
<th>Bldg</th>
<th>Wire-</th>
<th>Cell</th>
<th>M2M</th>
<th>M2M</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>People WB</td>
<td>Med</td>
<td>Hi</td>
<td>Hi</td>
<td>Low</td>
<td>Hi</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Effect 1 org</td>
<td>Hi</td>
<td>Hi</td>
<td>Med</td>
<td>Hi</td>
<td>Med</td>
<td>Med</td>
<td>Med</td>
</tr>
</tbody>
</table>

Recovery

| Recovery Time Obj | Med | Hi | Med | Hi | Hi | Hi |
| Recovery Point Obj | Med | Hi | Low | Med | Low | Hi | Hi |

DetNet Dependence

Time Dependency	Hi	Hi	Low	Hi	Med	Low	Hi
Latency/Jitter	Hi	Hi	Med	Med	Low	Low	Hi
Data Integrity	Hi	Hi	Med	Hi	Low	Hi	Low
Src Node Integ	Hi	Hi	Med	Hi	Med	Hi	Hi
Availability	Hi	Hi	Med	Hi	Low	Hi	Hi

Table, Part Two (of Two)

<table>
<thead>
<tr>
<th>Mining</th>
<th>Block</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Criticality | Hi | Med | Hi |

Effects

Financial	Hi	Hi	Hi
Health/Safety	Hi	Low	Med
People WB	Hi	Low	Med
Effect 1 org	Hi	Hi	Hi
Effect >1 org	Hi	Low	Hi

Recovery
The rest of this section will cover impact of the different groups in more detail.

4.1. Delay-Attacks

4.1.1. Data Plane Delay Attacks

Severely delayed messages in a DetNet link can result in the same behavior as dropped messages in ordinary networks as the services attached to the stream has strict deterministic requirements.

For a single path scenario, disruption is a real possibility, whereas in a multipath scenario, large delays or instabilities in one stream can lead to increased buffer and CPU resources on the elimination bridge.

A data-plane delay attack on a system controlling substantial moving devices, for example in industrial automation, can cause physical damage. For example, if the network promises a bounded latency of 2ms for a flow, yet the machine receives it with 5ms latency, the machine’s control loop can become unstable.

4.1.2. Control Plane Delay Attacks

In and of itself, this is not directly a threat to the DetNet service, but the effects of delaying control messages can have quite adverse effects later.
o Delayed tear-down can lead to resource leakage, which in turn can result in failure to allocate new streams finally giving rise to a denial of service attack.

o Failure to deliver, or severely delaying, signalling messages adding an end-point to a multicast-group will prevent the new EP from receiving expected frames thus disrupting expected behavior.

o Delaying messages removing an EP from a group can lead to loss of privacy as the EP will continue to receive messages even after it is supposedly removed.

4.2. Flow Modification and Spoofing

4.2.1. Flow Modification

ToDo.

4.2.2. Spoofing

4.2.2.1. Dataplane Spoofing

Spoofing dataplane messages can result in increased resource consumptions on the bridges throughout the network as it will increase buffer usage and CPU utilization. This can lead to resource exhaustion and/or increased delay.

If the attacker manages to create valid headers, the false messages can be forwarded through the network, using part of the allocated bandwidth. This in turn can cause legitimate messages to be dropped when the budget has been exhausted.

Finally, the endpoint will have to deal with invalid messages being delivered to the endpoint instead of (or in addition to) a valid message.

4.2.2.2. Control Plane Spoofing

A successful control plane spoofing-attack will potentionally have adverse effects. It can do virtually anything from:

o modifying existing streams by changing the available bandwidth

o add or remove endpoints from a stream

o drop streams completely
4.3. Segmentation attacks (injection)

4.3.1. Data Plane Segmentation

Injection of false messages in a DetNet stream could lead to exhaustion of the available bandwidth for a stream if the bridges accounts false messages to the stream’s budget.

In a multipath scenario, injected messages will cause increased CPU utilization in elimination bridges. If enough paths are subject to malicious injection, the legitimate messages can be dropped. Likewise it can cause an increase in buffer usage. In total, it will consume more resources in the bridges than normal, giving rise to a resource exhaustion attack on the bridges.

If a stream is interrupted, the end application will be affected by what is now a non-deterministic stream.

4.3.2. Control Plane segmentation

A successful Control Plane segmentation attack control messages to be interpreted by nodes in the network, unbeknownst to the central controller or the network engineer. This has the potential to create

- new streams (exhausting resources)
- drop existing (denial of service)
- add/remove end-stations to a multicast group (loss of privacy)
- modify the stream attributes (affecting available bandwidth)

4.4. Replication and Elimination

The Replication and Elimination is relevant only to Data Plane messages as Signalling is not subject to multipath routing.

4.4.1. Increased Attack Surface

Covered briefly in Section 4.3
4.4.2. Header Manipulation at Elimination Bridges

Covered briefly in Section 4.3

4.5. Control or Signaling Packet Modification

ToDo.

4.6. Control or Signaling Packet Injection

ToDo.

4.7. Reconnaissance

Of all the attacks, this is one of the most difficult to detect and counter. Often, an attacker will start out by observing the traffic going through the network and use the knowledge gathered in this phase to mount future attacks.

The attacker can, at their leisure, observe over time all aspects of the messaging and signalling, learning the intent and purpose of all traffic flows. At some later date, possibly at an important time in an operational context, the attacker can launch a multi-faceted attack, possibly in conjunction with some demand for ransom.

The flow-id in the header of the data plane-messages gives an attacker a very reliable identifier for DetNet traffic, and this traffic has a high probability of going to lucrative targets.

4.8. Attacks on Time Sync Mechanisms

ToDo.

4.9. Attacks on Path Choice

This is covered in part in Section 4.3, and as with Replication and Elimination (Section 4.4, this is relevant for DataPlane messages.

5. Security Threat Mitigation

This section describes a set of measures that can be taken to mitigate the attacks described in Section 3. These mitigations should be viewed as a toolset that includes several different and diverse tools. Each application or system will typically use a subset of these tools, based on a system-specific threat analysis.
5.1. Path Redundancy

Description

A DetNet flow that can be forwarded simultaneously over multiple paths. Path replication and elimination [I-D.ietf-detnet-architecture] provides resiliency to dropped or delayed packets. This redundancy improves the robustness to failures and to man-in-the-middle attacks.

Related attacks

Path redundancy can be used to mitigate various man-in-the-middle attacks, including attacks described in Section 3.2.1, Section 3.2.2, Section 3.2.3, and Section 3.2.8.

5.2. Integrity Protection

Description

An integrity protection mechanism, such as a Hash-based Message Authentication Code (HMAC) can be used to mitigate modification attacks. Integrity protection can be used on the data plane header, to prevent its modification and tampering. Integrity protection in the control plane is discussed in Section 5.5.

Related attacks

Integrity protection mitigates attacks related to modification and tampering, including the attacks described in Section 3.2.2 and Section 3.2.4.

5.3. DetNet Node Authentication

Description

Source authentication verifies the authenticity of DetNet sources, allowing to mitigate spoofing attacks. Note that while integrity protection (Section 5.2) prevents intermediate nodes from modifying information, authentication verifies the source of the information.

Related attacks

DetNet node authentication is used to mitigate attacks related to spoofing, including the attacks of Section 3.2.2, and Section 3.2.4.
5.4. Encryption

Description

DetNet flows can be forwarded in encrypted form.

Related attacks

Encryption can be used to mitigate recon attacks (Section 3.2.7). However, for a DetNet network to give differentiated quality of service on a flow-by-flow basis, the network must be able to identify the flows individually. This implies that in a recon attack the attacker may also be able to track individual flows to learn more about the system.

Encryption can also provide traffic origin verification, i.e. to verify that each packet in a DetNet flow is from a trusted source, for example as part of ingress filtering.

5.4.1. Encryption Considerations for DetNet

Any compute time which is required for encryption and decryption processing (‘crypto’) must be included in the flow latency calculations. Thus, crypto algorithms used in a DetNet must have bounded worst-case execution times, and these values must be used in the latency calculations.

Some crypto algorithms are symmetric in encode/decode time (such as AES) and others are asymmetric (such as public key algorithms). There are advantages and disadvantages to the use of either type in a given DetNet context.

Asymmetrical crypto is typically not used in networks on a packet-by-packet basis due to its computational cost. For example, if only endpoint checks or checks at a small number of intermediate points are required, asymmetric crypto can be used to authenticate distribution or exchange of a secret symmetric crypto key; a successful check based on that key will provide traffic origin verification, as long as the key is kept secret by the participants. TLS and IKE (for IPsec) are examples of this for endpoint checks.

However, if secret symmetrical keys are used for this purpose the key must be given to all relays, which increases the probability of a secret key being leaked. Also, if any relay is compromised or misbehaving it may inject traffic into the flow.

Alternatively, asymmetric crypto can provide traffic origin verification at every intermediate node. For example, a DetNet flow
can be associated with an (asymmetric) keypair, such that the private
key is available to the source of the flow and the public key is
distributed with the flow information, allowing verification at every
node for every packet. However, this is more computationally
expensive.

In either case, origin verification also requires replay detection as
part of the security protocol to prevent an attacker from recording
and resending traffic, e.g., as a denial of service attack on flow
forwarding resources.

If crypto keys are to be regenerated over the duration of the flow
then the time required to accomplish this must be accounted for in
the latency calculations.

5.5. Control and Signaling Message Protection

Description

Control and signaling messages can be protected using
authentication and integrity protection mechanisms.

Related attacks

These mechanisms can be used to mitigate various attacks on the
control plane, as described in Section 3.2.6, Section 3.2.8 and
Section 3.2.5.

5.6. Dynamic Performance Analytics

Description

Information about the network performance can be gathered in real-
time in order to detect anomalies and unusual behavior that may be
the symptom of a security attack. The gathered information can be
based, for example, on per-flow counters, bandwidth measurement,
and monitoring of packet arrival times. Unusual behavior or
potentially malicious nodes can be reported to a management
system, or can be used as a trigger for taking corrective actions.
The information can be tracked by DetNet end systems and transit
nodes, and exported to a management system, for example using
NETCONF.

Related attacks

Performance analytics can be used to mitigate various attacks,
including the ones described in Section 3.2.1 (Delay Attack),
Section 3.2.3 (Resource Segmentation Attack), and Section 3.2.8 (Time Sync Attack).

For example, in the case of data plane delay attacks, one possible mitigation is to timestamp the data at the source, and timestamp it again at the destination, and if the resulting latency exceeds the promised bound, discard that data and warn the operator (and/or enter a fail-safe mode).

5.7. Mitigation Summary

The following table maps the attacks of Section 3 to the impacts of Section 4, and to the mitigations of the current section. Each row specifies an attack, the impact of this attack if it is successfully implemented, and possible mitigation methods.

<table>
<thead>
<tr>
<th>Attack</th>
<th>Impact</th>
<th>Mitigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay Attack</td>
<td>-Non-deterministic delay</td>
<td>-Path redundancy</td>
</tr>
<tr>
<td></td>
<td>-Data disruption</td>
<td>-Performance</td>
</tr>
<tr>
<td></td>
<td>-Increased resource consumption</td>
<td>-analytics</td>
</tr>
<tr>
<td>Reconnaissance</td>
<td>-Enabler for other attacks</td>
<td>-Encryption</td>
</tr>
<tr>
<td>DetNet Flow Modification or Spoofing</td>
<td>-Increased resource consumption</td>
<td>-Path redundancy protection</td>
</tr>
<tr>
<td></td>
<td>-Data disruption</td>
<td>-DetNet Node authentication</td>
</tr>
<tr>
<td>Inter-Segment Attack</td>
<td>-Increased resource consumption</td>
<td>-Path redundancy</td>
</tr>
<tr>
<td></td>
<td>-Data disruption</td>
<td>-Performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-analytics</td>
</tr>
<tr>
<td>Replication: Increased attack surface</td>
<td>-All impacts of other attacks</td>
<td>-Integrity protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-DetNet Node authentication</td>
</tr>
<tr>
<td>Replication-related Header Manipulation</td>
<td>-Non-deterministic delay</td>
<td>-Integrity protection</td>
</tr>
<tr>
<td></td>
<td>-Data disruption</td>
<td>-DetNet Node authentication</td>
</tr>
<tr>
<td>Path Manipulation</td>
<td>-Enabler for other attacks</td>
<td>-Control message protection</td>
</tr>
</tbody>
</table>
6. Association of Attacks to Use Cases

Different attacks can have different impact and/or mitigation depending on the use case, so we would like to make this association in our analysis. However since there is a potentially unbounded list of use cases, we categorize the attacks with respect to the common themes of the use cases as identified in the Use Case Common Themes section of the DetNet Use Cases draft [I-D.ietf-detnet-use-cases].

See also Figure 2 for a mapping of the impact of attacks per use case by industry.

6.1. Use Cases by Common Themes

In this section we review each theme and discuss the attacks that are applicable to that theme, as well as anything specific about the impact and mitigations for that attack with respect to that theme. The table Figure 5 then provides a summary of the attacks that are applicable to each theme.

Figure 3: Mapping Attacks to Impact and Mitigations

<table>
<thead>
<tr>
<th>Path Choice: Increased Attack Surface</th>
<th>All impacts of other attacks</th>
<th>Control message protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control or Signaling Packet Modification</td>
<td>Increased resource consumption</td>
<td>Control message protection</td>
</tr>
<tr>
<td></td>
<td>Non-deterministic delay</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data disruption</td>
<td></td>
</tr>
<tr>
<td>Control or Signaling Packet Injection</td>
<td>Increased resource consumption</td>
<td>Control message protection</td>
</tr>
<tr>
<td></td>
<td>Non-deterministic delay</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data disruption</td>
<td></td>
</tr>
<tr>
<td>Attacks on Time Sync Mechanisms</td>
<td>Non-deterministic delay</td>
<td>Path redundancy</td>
</tr>
<tr>
<td></td>
<td>Increased resource consumption</td>
<td>Control message protection</td>
</tr>
<tr>
<td></td>
<td>Data disruption</td>
<td>Performance analytics</td>
</tr>
</tbody>
</table>
6.1.1. Network Layer - AVB/TSN Ethernet

DetNet is expected to run over various transmission mediums, with Ethernet being explicitly supported. Attacks such as Delay or Reconnaissance might be implemented differently on a different transmission medium, however the impact on the DetNet as a whole would be essentially the same. We thus conclude that all attacks and impacts that would be applicable to DetNet over Ethernet (i.e. all those named in this draft) would also be applicable to DetNet over other transmission mediums.

With respect to mitigations, some methods are specific to the Ethernet medium, for example time-aware scheduling using 802.1Qbv can protect against excessive use of bandwidth at the ingress - for other mediums, other mitigations would have to be implemented to provide analogous protection.

6.1.2. Central Administration

A DetNet network is expected to be controlled by a centralized network configuration and control system (CNC). Such a system may be in a single central location, or it may be distributed across multiple control entities that function together as a unified control system for the network.

In this draft we distinguish between attacks on the DetNet Control plane vs. Data plane. But is an attack affecting control plane packets synonymous with an attack on the CNC itself? For purposes of this draft let us consider an attack on the CNC itself to be out of scope, and consider all attacks named in this draft which are relevant to control plane packets to be relevant to this theme, including Path Manipulation, Path Choice, Control Packet Modification or Injection, Reconnaissance and Attacks on Time Sync Mechanisms.

6.1.3. Hot Swap

A DetNet network is not expected to be "plug and play" - it is expected that there is some centralized network configuration and control system. However, the ability to "hot swap" components (e.g. due to malfunction) is similar enough to "plug and play" that this kind of behavior may be expected in DetNet networks, depending on the implementation.

An attack surface related to Hot Swap is that the DetNet network must at least consider input at runtime from devices that were not part of the initial configuration of the network. Even a "perfect" (or "hitless") replacement of a device at runtime would not necessarily be ideal, since presumably one would want to distinguish it from the
original for OAM purposes (e.g. to report hot swap of a failed device).

This implies that an attack such as Flow Modification, Spoofing or Inter-segment (which could introduce packets from a "new" device (i.e. one heretofore unknown on the network) could be used to exploit the need to consider such packets (as opposed to rejecting them out of hand as one would do if one did not have to consider introduction of a new device).

Similarly if the network was designed to support runtime replacement of a clock device, then presence (or apparent presence) and thus consideration of packets from a new such device could affect the network, or the time sync of the network, for example by initiating a new Best Master Clock selection process. Thus attacks on time sync should be considered when designing hot swap type functionality.

6.1.4. Data Flow Information Models

Data Flow Information Models specific to DetNet networks are to be specified by DetNet. Thus they are "new" and thus potentially present a new attack surface. Does the threat take advantage of any aspect of our new Data Flow Info Models?

This is TBD, thus there are no specific entries in our table, however that does not imply that there could be no relevant attacks.

6.1.5. L2 and L3 Integration

A DetNet network integrates Layer 2 (bridged) networks (e.g. AVB/TSN LAN) and Layer 3 (routed) networks via the use of well-known protocols such as IPv6, MPLS-PW, and Ethernet. Presumably security considerations applicable directly to those individual protocols is not specific to DetNet, and thus out of scope for this draft. However enabling DetNet to coordinate Layer 2 and Layer 3 behavior will require some additions to existing protocols (see draft-dt-detnet-dp-alt) and any such new work can introduce new attack surfaces.

This is TBD, thus there are no specific entries in our table, however that does not imply that there could be no relevant attacks.

6.1.6. End-to-End Delivery

Packets sent over DetNet are guaranteed not to be dropped by the network due to congestion. (Packets may however be dropped for intended reasons, e.g. per security measures).
A Data plane attack may force packets to be dropped, for example a "long" Delay or Replication/Elimination or Flow Modification attack.

The same result might be obtained by a Control plane attack, e.g. Path Manipulation or Signaling Packet Modification.

It may be that such attacks are limited to Internal MITM attackers, but other possibilities should be considered.

An attack may also cause packets that should not be delivered to be delivered, such as by forcing packets from one (e.g. replicated) path to be preferred over another path when they should not be (Replication attack), or by Flow Modification, or by Path Choice or Packet Injection. A Time Sync attack could cause a system that was expecting certain packets at certain times to accept unintended packets based on compromised system time or time windowing in the scheduler.

6.1.7. Proprietary Deterministic Ethernet Networks

There are many proprietary non-interoperable deterministic Ethernet-based networks currently available; DetNet is intended to provide an open-standards-based alternative to such networks. In cases where a DetNet intersects with remnants of such networks or their protocols, such as by protocol emulation or access to such a network via a gateway, new attack surfaces can be opened.

For example an Inter-Segment or Control plane attack such as Path Manipulation, Path Choice or Control Packet Modification/Injection could be used to exploit commands specific to such a protocol, or that are interpreted differently by the different protocols or gateway.

6.1.8. Replacement for Proprietary Fieldbuses

There are many proprietary "field buses" used in today's industrial and other industries; DetNet is intended to provide an open-standards-based alternative to such buses. In cases where a DetNet intersects with such fieldbuses or their protocols, such as by protocol emulation or access via a gateway, new attack surfaces can be opened.

For example an Inter-Segment or Control plane attack such as Path Manipulation, Path Choice or Control Packet Modification/Injection could be used to exploit commands specific to such a protocol, or that are interpreted differently by the different protocols or gateway.
6.1.9. Deterministic vs Best-Effort Traffic

DetNet is intended to support coexistence of time-sensitive operational (OT, deterministic) traffic and information (IT, "best effort") traffic on the same ("unified") network.

The presence of IT traffic on a network carrying OT traffic has long been considered insecure design [reference needed here]. With DetNet, this coexistence will become more common, and mitigations will need to be established. The fact that the IT traffic on a DetNet is limited to a corporate controlled network makes this a less difficult problem compared to being exposed to the open Internet, however this aspect of DetNet security should not be underestimated.

Most of the themes described in this draft address OT (reserved) streams - this item is intended to address issues related to IT traffic on a DetNet.

An Inter-segment attack can flood the network with IT-type traffic with the intent of disrupting handling of IT traffic, and/or the goal of interfering with OT traffic. Presumably if the stream reservation and isolation of the DetNet is well-designed (better-designed than the attack) then interference with OT traffic should not result from an attack that floods the network with IT traffic.

However the DetNet’s handling of IT traffic may not (by design) be as resilient to DOS attack, and thus designers must be otherwise prepared to mitigate DOS attacks on IT traffic in a DetNet.

6.1.10. Deterministic Flows

Reserved bandwidth data flows (deterministic flows) must provide the allocated bandwidth, and must be isolated from each other.

A Spoofing or Inter-segment attack which adds packet traffic to a bandwidth-reserved stream could cause that stream to occupy more bandwidth than it is allocated, resulting in interference with other deterministic flows.

A Flow Modification or Spoofing or Header Manipulation or Control Packet Modification attack could cause packets from one flow to be directed to another flow, thus breaching isolation between the flows.

6.1.11. Unused Reserved Bandwidth

If bandwidth reservations are made for a stream but the associated bandwidth is not used at any point in time, that bandwidth is made available on the network for best-effort traffic. If the owner of
the reserved stream then starts transmitting again, the bandwidth is no longer available for best-effort traffic, on a moment-to-moment basis. (Such "temporarily available" bandwidth is not available for time-sensitive traffic, which must have its own reservation).

An Inter-segment attack could flood the network with IT traffic, interfering with the intended IT traffic.

A Flow Modification or Spoofing or Control Packet Modification or Injection attack could cause extra bandwidth to be reserved by a new or existing stream, thus making it unavailable for use by best-effort traffic.

6.1.12. Interoperability

The DetNet network specifications are intended to enable an ecosystem in which multiple vendors can create interoperable products, thus promoting device diversity and potentially higher numbers of each device manufactured. Does the threat take advantage of differences in implementation of "interoperable" products made by different vendors?

This is TBD, thus there are no specific entries in our table, however that does not imply that there could be no relevant attacks.

6.1.13. Cost Reductions

The DetNet network specifications are intended to enable an ecosystem in which multiple vendors can create interoperable products, thus promoting higher numbers of each device manufactured, promoting cost reduction and cost competition among vendors. Does the threat take advantage of "low cost" HW or SW components or other "cost-related shortcuts" that might be present in devices?

This is TBD, thus there are no specific entries in our table, however that does not imply that there could be no relevant attacks.

The DetNet network specifications are intended to enable an ecosystem in which multiple vendors can create interoperable products, thus promoting device diversity and potentially higher numbers of each device manufactured. Does the threat attack "naivete" of SW, for example SW that was not designed to be sufficiently secure (or secure at all) but is deployed on a DetNet network that is intended to be highly secure? (For example IoT exploits like the Mirai video-camera botnet ([MIRAI]).
This is TBD, thus there are no specific entries in our table, however that does not imply that there could be no relevant attacks.

6.1.15. DetNet Network Size

DetNet networks range in size from very small, e.g. inside a single industrial machine, to very large, for example a Utility Grid network spanning a whole country.

The size of the network might be related to how the attack is introduced into the network, for example if the entire network is local, there is a threat that power can be cut to the entire network. If the network is large, perhaps only a part of the network is attacked.

A Delay attack might be as relevant to a small network as to a large network, although the amount of delay might be different.

Attacks sourced from IT traffic might be more likely in large networks, since more people might have access to the network. Similarly Path Manipulation, Path Choice and Time Sync attacks seem more likely relevant to large networks.

6.1.16. Multiple Hops

Large DetNet networks (e.g. a Utility Grid network) may involve many "hops" over various kinds of links for example radio repeaters, microwave links, fiber optic links, etc..

An attack that takes advantage of flaws (or even normal operation) in the device drivers for the various links (through internal knowledge of how the individual driver or firmware operates, perhaps like the Stuxnet attack) could take proportionately greater advantage of this topology. We don’t currently have an attack like this defined; we have only "protocol" (time or packet) based attacks. Perhaps we need to define an attack like this? Or is that out of scope for DetNet?

It is also possible that this DetNet topology will not be in as common use as other more homogeneous topologies so there may be more opportunity for attackers to exploit software and/or protocol flaws in the implementations which have not been wrung out by extensive use, particularly in the case of early adopters.

Of the attacks we have defined, the ones identified above as relevant to "large" networks seem to be most relevant.
6.1.17. Level of Service

A DetNet is expected to provide means to configure the network that include querying network path latency, requesting bounded latency for a given stream, requesting worst case maximum and/or minimum latency for a given path or stream, and so on. It is an expected case that the network cannot provide a given requested service level. In such cases the network control system should reply that the requested service level is not available (as opposed to accepting the parameter but then not delivering the desired behavior).

Control plane attacks such as Signaling Packet Modification and Injection could be used to modify or create control traffic that could interfere with the process of a user requesting a level of service and/or the network’s reply.

Reconnaissance could be used to characterize flows and perhaps target specific flows for attack via the Control plane as noted above.

6.1.18. Bounded Latency

DetNet provides the expectation of guaranteed bounded latency.

Delay attacks can cause packets to miss their agreed-upon latency boundaries.

Time Sync attacks can corrupt the system’s time reference, resulting in missed latency deadlines (with respect to the "correct" time reference).

6.1.19. Low Latency

Applications may require "extremely low latency" however depending on the application these may mean very different latency values; for example "low latency" across a Utility grid network is on a different time scale than "low latency" in a motor control loop in a small machine. The intent is that the mechanisms for specifying desired latency include wide ranges, and that architecturally there is nothing to prevent arbitrarily low latencies from being implemented in a given network.

Attacks on the Control plane (as described in the Level of Service theme) and Delay and Time attacks (as described in the Bounded Latency theme) both apply here.
6.1.20. Bounded Jitter (Latency Variation)

DetNet is expected to provide bounded jitter (packet to packet latency variation).

Delay attacks can cause packets to vary in their arrival times, resulting in packet to packet latency variation, thereby violating the jitter specification.

6.1.21. Symmetrical Path Delays

Some applications would like to specify that the transit delay time values be equal for both the transmit and return paths.

Delay attacks can cause path delays to differ.

Time Sync attacks can corrupt the system’s time reference, resulting in differing path delays (with respect to the "correct" time reference).

6.1.22. Reliability and Availability

DetNet based systems are expected to be implemented with essentially arbitrarily high availability (for example 99.9999% up time, or even 12 nines). The intent is that the DetNet designs should not make any assumptions about the level of reliability and availability that may be required of a given system, and should define parameters for communicating these kinds of metrics within the network.

Any attack on the system, of any type, can affect its overall reliability and availability, thus in our table we have marked every attack. Since every DetNet depends to a greater or lesser degree on reliability and availability, this essentially means that all networks have to mitigate all attacks, which to a greater or lesser degree defeats the purpose of associating attacks with use cases. It also underscores the difficulty of designing "extremely high reliability" networks. I hope that in future drafts we can say something more useful here.

6.1.23. Redundant Paths

DetNet based systems are expected to be implemented with essentially arbitrarily high reliability/availability. A strategy used by DetNet for providing such extraordinarily high levels of reliability is to provide redundant paths that can be seamlessly switched between, all the while maintaining the required performance of that system.
Replication-related attacks are by definition applicable here. Control plane attacks can also interfere with the configuration of redundant paths.

A DetNet network must be made secure against devices failures, attackers, misbehaving devices, and so on. Does the threat affect such security measures themselves, e.g. by attacking SW designed to protect against device failure?

This is TBD, thus there are no specific entries in our table, however that does not imply that there could be no relevant attacks.

6.2. Attack Types by Use Case Common Theme

The following table lists the attacks of Section 3, assigning a number to each type of attack. That number is then used as a short form identifier for the attack in Figure 5.

<table>
<thead>
<tr>
<th>Attack</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Delay Attack</td>
<td>Section 3.2.1</td>
</tr>
<tr>
<td>2 DetNet Flow Modification or Spoofing</td>
<td>Section 3.2.2</td>
</tr>
<tr>
<td>3 Inter-Segment Attack</td>
<td>Section 3.2.3</td>
</tr>
<tr>
<td>4 Replication: Increased attack surface</td>
<td>Section 3.2.4.1</td>
</tr>
<tr>
<td>5 Replication-related Header Manipulation</td>
<td>Section 3.2.4.2</td>
</tr>
<tr>
<td>6 Path Manipulation</td>
<td>Section 3.2.5.1</td>
</tr>
<tr>
<td>7 Path Choice: Increased Attack Surface</td>
<td>Section 3.2.5.2</td>
</tr>
<tr>
<td>8 Control or Signaling Packet Modification</td>
<td>Section 3.2.6.1</td>
</tr>
<tr>
<td>9 Control or Signaling Packet Injection</td>
<td>Section 3.2.6.2</td>
</tr>
<tr>
<td>10 Reconnaissance</td>
<td>Section 3.2.7</td>
</tr>
<tr>
<td>11 Attacks on Time Sync Mechanisms</td>
<td>Section 3.2.8</td>
</tr>
</tbody>
</table>

Figure 4: List of Attacks
The following table maps the use case themes presented in this memo to the attacks of Figure 4. Each row specifies a theme, and the attacks relevant to this theme are marked with a ‘+’.

<table>
<thead>
<tr>
<th>Theme</th>
<th>Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>+--</td>
<td></td>
</tr>
<tr>
<td>Network Layer - AVB/TSN Eth.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Central Administration</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Hot Swap</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Data Flow Information Models</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>L2 and L3 Integration</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>End-to-end Delivery</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Proprietary Deterministic Ethernet Networks</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Replacement for Proprietary Fieldbuses</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Deterministic vs. Best-Effort Traffic</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Deterministic Flows</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Unused Reserved Bandwidth</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Interoperability</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Cost Reductions</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Insufficiently Secure Devices</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>DetNet Network Size</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Multiple Hops</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Level of Service</td>
<td>+ + + + + + + + + + +</td>
</tr>
</tbody>
</table>
Figure 5: Mapping Between Themes and Attacks

6.3. Security Considerations for OAM Traffic

This section considers DetNet-specific security considerations for packet traffic that is generated and transmitted over a DetNet as part of OAM (Operations, Administration and Maintenance). For purposes of this discussion, OAM traffic falls into one of two basic types:

- **OAM traffic generated by the network itself.** The additional bandwidth required for such packets is added by the network administration, presumably transparent to the customer. Security considerations for such traffic are not DetNet-specific (apart from such traffic being subject to the same DetNet-specific security considerations as any other DetNet data flow) and are thus not covered in this document.

- **OAM traffic generated by the customer.** From a DetNet security point of view, DetNet security considerations for such traffic are exactly the same as for any other customer data flows.

Thus OAM traffic presents no additional (i.e. OAM-specific) DetNet security considerations.

7. Appendix A: DetNet Draft Security-Related Statements

This section collects the various statements in the currently existing DetNet Working Group drafts. For each draft, the section name and number of the quoted section is shown. The text shown here is the work of the original draft authors, quoted verbatim from the drafts. The intention is to explicitly quote all relevant text, not to summarize it.
7.1. Architecture (draft 8)

7.1.1. Fault Mitigation (sec 4.5)

One key to building robust real-time systems is to reduce the
infinite variety of possible failures to a number that can be
analyzed with reasonable confidence. DetNet aids in the process by
providing filters and policers to detect DetNet packets received on
the wrong interface, or at the wrong time, or in too great a volume,
and to then take actions such as discarding the offending packet,
shutting down the offending DetNet flow, or shutting down the
offending interface.

It is also essential that filters and service remarking be employed
at the network edge to prevent non-DetNet packets from being mistaken
for DetNet packets, and thus impinging on the resources allocated to
DetNet packets.

There exist techniques, at present and/or in various stages of
standardization, that can perform these fault mitigation tasks that
deliver a high probability that misbehaving systems will have zero
impact on well-behaved DetNet flows, except of course, for the
receiving interface(s) immediately downstream of the misbehaving
device. Examples of such techniques include traffic policing
functions (e.g. [RFC2475]) and separating flows into per-flow rate-
limited queues.

7.1.2. Security Considerations (sec 7)

Security in the context of Deterministic Networking has an added
dimension; the time of delivery of a packet can be just as important
as the contents of the packet, itself. A man-in-the-middle attack,
for example, can impose, and then systematically adjust, additional
delays into a link, and thus disrupt or subvert a real-time
application without having to crack any encryption methods employed.
See [RFC7384] for an exploration of this issue in a related context.

Furthermore, in a control system where millions of dollars of
equipment, or even human lives, can be lost if the DetNet QoS is not
delivered, one must consider not only simple equipment failures,
where the box or wire instantly becomes perfectly silent, but bizarre
errors such as can be caused by software failures. Because there is
essential no limit to the kinds of failures that can occur,
protecting against realistic equipment failures is indistinguishable,
in most cases, from protecting against malicious behavior, whether
accidental or intentional.

Security must cover:
7.2. Data Plane Alternatives (draft 4)

7.2.1. Security Considerations (sec 7)

This document does not add any new security considerations beyond what the referenced technologies already have.

7.3. Problem Statement (draft 5)

7.3.1. Security Considerations (sec 5)

Security in the context of Deterministic Networking has an added dimension; the time of delivery of a packet can be just as important as the contents of the packet, itself. A man-in-the-middle attack, for example, can impose, and then systematically adjust, additional delays into a link, and thus disrupt or subvert a real-time application without having to crack any encryption methods employed. See [RFC7384] for an exploration of this issue in a related context.

Typical control networks today rely on complete physical isolation to prevent rogue access to network resources. DetNet enables the virtualization of those networks over a converged IT/OT infrastructure. Doing so, DetNet introduces an additional risk that flows interact and interfere with one another as they share physical resources such as Ethernet trunks and radio spectrum. The requirement is that there is no possible data leak from and into a deterministic flow, and in a more general fashion there is no possible influence whatsoever from the outside on a deterministic flow. The expectation is that physical resources are effectively associated with a given flow at a given point of time. In that model, Time Sharing of physical resources becomes transparent to the individual flows which have no clue whether the resources are used by other flows at other times.

Security must cover:

- Protection of the signaling protocol
- Authentication and authorization of the controlling nodes
- Identification and shaping of the flows
7.4. Use Cases (draft 11)

7.4.1. (Utility Networks) Security Current Practices and Limitations (sec 3.2.1)

Grid monitoring and control devices are already targets for cyber attacks, and legacy telecommunications protocols have many intrinsic network-related vulnerabilities. For example, DNP3, Modbus, PROFIBUS/PROFINET, and other protocols are designed around a common paradigm of request and respond. Each protocol is designed for a master device such as an HMI (Human Machine Interface) system to send commands to subordinate slave devices to retrieve data (reading inputs) or control (writing to outputs). Because many of these protocols lack authentication, encryption, or other basic security measures, they are prone to network-based attacks, allowing a malicious actor or attacker to utilize the request-and-respond system as a mechanism for command-and-control like functionality. Specific security concerns common to most industrial control, including utility telecommunication protocols include the following:

- Network or transport errors (e.g. malformed packets or excessive latency) can cause protocol failure.
- Protocol commands may be available that are capable of forcing slave devices into inoperable states, including powering-off devices, forcing them into a listen-only state, disabling alarming.
- Protocol commands may be available that are capable of restarting communications and otherwise interrupting processes.
- Protocol commands may be available that are capable of clearing, erasing, or resetting diagnostic information such as counters and diagnostic registers.
- Protocol commands may be available that are capable of requesting sensitive information about the controllers, their configurations, or other need-to-know information.
- Most protocols are application layer protocols transported over TCP; therefore it is easy to transport commands over non-standard ports or inject commands into authorized traffic flows.
o Protocol commands may be available that are capable of broadcasting messages to many devices at once (i.e. a potential DoS).

o Protocol commands may be available to query the device network to obtain defined points and their values (i.e. a configuration scan).

o Protocol commands may be available that will list all available function codes (i.e. a function scan).

o These inherent vulnerabilities, along with increasing connectivity between IT an OT networks, make network-based attacks very feasible.

o Simple injection of malicious protocol commands provides control over the target process. Altering legitimate protocol traffic can also alter information about a process and disrupt the legitimate controls that are in place over that process. A man-in-the-middle attack could provide both control over a process and misrepresentation of data back to operator consoles.

7.4.2. (Utility Networks) Security Trends in Utility Networks (see sec 3.3.3)

Although advanced telecommunications networks can assist in transforming the energy industry by playing a critical role in maintaining high levels of reliability, performance, and manageability, they also introduce the need for an integrated security infrastructure. Many of the technologies being deployed to support smart grid projects such as smart meters and sensors can increase the vulnerability of the grid to attack. Top security concerns for utilities migrating to an intelligent smart grid telecommunications platform center on the following trends:

- Integration of distributed energy resources
- Proliferation of digital devices to enable management, automation, protection, and control
- Regulatory mandates to comply with standards for critical infrastructure protection
- Migration to new systems for outage management, distribution automation, condition-based maintenance, load forecasting, and smart metering
- Demand for new levels of customer service and energy management
This development of a diverse set of networks to support the integration of microgrids, open-access energy competition, and the use of network-controlled devices is driving the need for a converged security infrastructure for all participants in the smart grid, including utilities, energy service providers, large commercial and industrial, as well as residential customers. Securing the assets of electric power delivery systems (from the control center to the substation, to the feeders and down to customer meters) requires an end-to-end security infrastructure that protects the myriad of telecommunications assets used to operate, monitor, and control power flow and measurement.

"Cyber security" refers to all the security issues in automation and telecommunications that affect any functions related to the operation of the electric power systems. Specifically, it involves the concepts of:

- **Integrity**: data cannot be altered undetectably
- **Authenticity**: the telecommunications parties involved must be validated as genuine
- **Authorization**: only requests and commands from the authorized users can be accepted by the system
- **Confidentiality**: data must not be accessible to any unauthenticated users

When designing and deploying new smart grid devices and telecommunications systems, it is imperative to understand the various impacts of these new components under a variety of attack situations on the power grid. Consequences of a cyber attack on the grid telecommunications network can be catastrophic. This is why security for smart grid is not just an ad hoc feature or product, it’s a complete framework integrating both physical and Cyber security requirements and covering the entire smart grid networks from generation to distribution. Security has therefore become one of the main foundations of the utility telecom network architecture and must be considered at every layer with a defense-in-depth approach. Migrating to IP based protocols is key to address these challenges for two reasons:

- **IP enables a rich set of features and capabilities to enhance the security posture**
- **IP is based on open standards, which allows interoperability between different vendors and products, driving down the costs associated with implementing security solutions in OT networks.**
Securing OT (Operation technology) telecommunications over packet-switched IP networks follow the same principles that are foundational for securing the IT infrastructure, i.e., consideration must be given to enforcing electronic access control for both person-to-machine and machine-to-machine communications, and providing the appropriate levels of data privacy, device and platform integrity, and threat detection and mitigation.

Existing power automation security standards can inform network security. For example the NERC CIP (North American Electric Reliability Corporation Critical Infrastructure Protection) plan is a set of requirements designed to secure the assets required for operating North America’s bulk electric system. Another standardized security control technique is Segmentation (zones and conduits including access control).

The requirements in Industrial Automation and Control Systems (IACS) are quite similar, especially in new scenarios such as Industry 4.0/ Digital Factory where workflows and protocols cross zones, segments, and entities. IEC 62443 (ISA99) defines security for IACS, typically for installations in other critical infrastructure such as oil and gas.

Availability and integrity are the most important security objectives for the lower layers of such networks; confidentiality and privacy are relevant if customer or market data is involved, typically handled by higher layers.

7.4.3. (BAS) Security Considerations (sec 4.2.4)

When BAS field networks were developed it was assumed that the field networks would always be physically isolated from external networks and therefore security was not a concern. In today’s world many BASs are managed remotely and are thus connected to shared IP networks and so security is definitely a concern, yet security features are not available in the majority of BAS field network deployments.

The management network, being an IP-based network, has the protocols available to enable network security, but in practice many BAS systems do not implement even the available security features such as device authentication or encryption for data in transit.

7.4.4. (6TiSCH) Security Considerations (sec 5.3.3)

On top of the classical requirements for protection of control signaling, it must be noted that 6TiSCH networks operate on limited resources that can be depleted rapidly in a DoS attack on the system, for instance by placing a rogue device in the network, or by
obtaining management control and setting up unexpected additional paths.

7.4.5. (Cellular radio) Security Considerations (sec 6.1.5)

Establishing time-sensitive streams in the network entails reserving networking resources for long periods of time. It is important that these reservation requests be authenticated to prevent malicious reservation attempts from hostile nodes (or accidental misconfiguration). This is particularly important in the case where the reservation requests span administrative domains. Furthermore, the reservation information itself should be digitally signed to reduce the risk of a legitimate node pushing a stale or hostile configuration into another networking node.

Note: This is considered important for the security policy of the network, but does not affect the core DetNet architecture and design.

7.4.6. (Industrial M2M) Communication Today (sec 7.2)

Industrial network scenarios require advanced security solutions. Many of the current industrial production networks are physically separated. Preventing critical flows from being leaked outside a domain is handled today by filtering policies that are typically enforced in firewalls.

8. IANA Considerations

This memo includes no requests from IANA.

9. Security Considerations

The security considerations of DetNet networks are presented throughout this document.

10. Informative References

[ARINC664P7]

[I-D.ietf-detnet-architecture]
[I-D.ietf-detnet-use-cases]

[I-D.varga-detnet-service-model]

[IEEE1588]

[MIRAI]

Authors' Addresses

Tal Mizrahi
Huawei Network.IO Innovation Lab

Email: tal.mizrahi.phd@gmail.com

Ethan Grossman (editor)
Dolby Laboratories, Inc.
1275 Market Street
San Francisco, CA 94103
USA

Phone: +1 415 645 4726
Email: ethan.grossman@dolby.com
URI: http://www.dolby.com
Andrew J. Hacker
MistIQ Technologies, Inc
Harrisburg, PA
USA
Email: ajhacker@mistiqtech.com
URI: http://www.mistiqtech.com

Subir Das
Applied Communication Sciences
150 Mount Airy Road, Basking Ridge
New Jersey, 07920
USA
Email: sdas@appcomsci.com

John Dowdell
Airbus Defence and Space
Celtic Springs
Newport NP10 8FZ
United Kingdom
Email: john.dowdell.ietf@gmail.com

Henrik Austad
Cisco Systems
Philip Pedersens vei 1
Lysaker 1366
Norway
Email: henrik@austad.us

Kevin Stanton
Intel
Email: kevin.b.stanton@intel.com

Norman Finn
Huawei
Email: norman.finn@mail01.huawei.com