Abstract

This document defines a means of self test for a Label-Switching Router (LSR) to verify that its dataplane is functioning for certain key Multi-Protocol Label Switching (MPLS) applications including unicast forwarding based on LDP [LDP] and traffic engineering tunnels based on [RSVP-TE]. A new Loopback FEC type
is defined to allow an upstream neighbor to assist in the testing at very low cost. MPLS Echo Request and MPLS Echo Reply messages are extended to do the actual probing.

Contents

1 Introduction ... 3
1.1 Conventions ... 3
2 Loopback FEC ... 4
2.1 Loopback FEC Element 4
2.2 LDP Procedures .. 5
3 Data Plane Self Test 5
3.1 Data Plane Verification Request / Reply Messages 7
3.2 Downstream Verification Object 8
3.2.1 IPv4 Downstream Verification Object 8
3.2.2 IPv6 Downstream Verification Object 11
3.3 Reply-To Object .. 13
3.3.1 IPv4 Reply-To Object 14
3.3.2 IPv6 Reply-To Object 14
3.4 Sending procedures 15
3.5 Receiving procedures 16
3.6 Upstream Neighbor Verification 16
4 Security Considerations 17
5 IANA Considerations 17
6 Acknowledgments .. 17
7 References .. 18
7.1 Normative References 18
7.2 Informative References 18
8 Authors’ Addresses 18
9 Intellectual Property Notice 19
10 Full Copyright Statement 19
1. Introduction

This document defines a means of self test for a Label-Switching Router (LSR) to verify that its dataplane is functioning for certain key Multi-Protocol Label Switching (MPLS) applications including unicast forwarding based on LDP [LDP] and traffic engineering tunnels based on [RSVP-TE]. MPLS Echo Request and MPLS Echo Reply messages [LSP-Ping] messages are extended to do the actual probing. The pings are sent to an upstream neighbor, looped back through the LSR under test and intercepted, by means of TTL expiration by a downstream neighbor. Extensions to LSP-Ping [LSP-Ping] are defined to allow the downstream neighbor to report the test results.

In order to minimize the load on upstream LSRs a new loopback FEC is defined. Receipt of a packet labeled with a loopback label will cause the advertising LSR to pop the label off the label stack and send the packet out the advertised interface.

Note that use of a loopback allows an LSR to test label entries for which the LSR is not currently some neighbor’s next hop. In this way label entries can be verified prior to the occurrence of a routing change.

Some routing protocols, most notably OSPF have no means of exchanging the "Link Local Identifiers" used to identify unnumbered links and components of bundled links. These test procedures can be used to associate the neighbor’s interfaces with the probing LSRs interfaces. This is achieved by simply having the TTL of the MPLS Ping expire one hop sooner, i.e. at the testing LSR itself.

1.1. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [KEYWORDS].
2. Loopback FEC

The Loopback FEC type is defined to enable an upstream neighbor to assist in LSR self-testing at very low cost. This FEC causes the loopback to occur in the dataplane without control plane involvement beyond the initial LDP exchange and dataplane setup.

An LSR uses the Loopback FEC to selectively advertise loopback labels to its neighbor LSRs. Each loopback label is bound to a particular interface. For multi-access links, a unique label for each neighbor is required, since the link-level address is derived from the label lookup. When an MPLS packet with its top label set to a loopback label is received from an interface over which that label was advertised, the loopback label is popped and the packet is sent on the interface to which the loopback label was bound.

TTL treatment for loopback labels follows the Uniform model. I.e. the TTL carried in the loopback label is decremented and copied to the exposed label or IP header as the case may be.

2.1. Loopback FEC Element

FEC element type 130 is used. The FEC element is encoded as follows: (note: 130 is provisionally assigned, the actual value will be assigned by IANA.)

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     130       |      Res      | Interface Type|   Id Length   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     Interface Identifier                      |
|                              "                                |
|                              "                                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Reserved (Res)

Must be set to zero on transmission and ignored on receipt.
Interface Type

<table>
<thead>
<tr>
<th>#</th>
<th>Type</th>
<th>Interface Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unnumbered</td>
<td>A 32 bit Link Identifier as defined in [RFC3477]</td>
</tr>
<tr>
<td>1</td>
<td>IPv4 Numbered</td>
<td>IPv4 Address</td>
</tr>
<tr>
<td>2</td>
<td>IPv6 Numbered</td>
<td>IPv6 Address</td>
</tr>
</tbody>
</table>

Identifier Length

Length of the interface identifier in octets.
The length is 4 bytes for Unnumbered and IPv4, 16 bytes for IPv6.

Address

An identifier encoded according to the Identifier Type field.

2.2. LDP Procedures

It is RECOMMENDED that loopback labels only be distributed in response to a Label Request message, irrespective of the label advertisement mode of the LDP session. However it is recognized that in certain cases such as OSPF with unnumbered links, the upstream LSR may not have sufficiently detailed information of the neighbor’s link identifier to form the request. In these cases, the downstream LSR will need to be configured to make unsolicited advertisements.

3. Data Plane Self Test

A self test operation involves three LSRs, the LSR doing the test, an upstream neighbor and a downstream neighbor. We refer to these as LSRs T, U, and D respectively. In order to minimize the processing load on LSRD, two new LSP Ping messages are defined, called the MPLS Data Plane Verification Request and the MPLS Data Plane Verification Reply. These messages are used to allow LSRT to obtain the label stack, address and interface information of LSRD.

If FEC verification is required, the MPLS Echo Request and Reply messages are used.

The packet flow is shown below. Although the figure shows LSRD adjacent to LSRT it may in some cases be an arbitrary number of hops away.
In order to perform a test on an incoming label stack, LSRT forms an MPLS Data Plane Verification Request. Included in that is a Data Plane Verification Object which requests that the interface and label stack seen by LSRD be returned. Optionally LSRT could have included FEC Stack TLV to verify that LSRD’s labels are mapped to the expected FECs. In that case an MPLS Echo Request Message would have been used.

LSRT prepends the packet with the incoming label stack being tested and the loopback label received from LSRU. The TTL values are set such that they will expire at LSRD. LSRT then forwards the packet to LSRU.

LSRU receives the packet and performs normal MPLS forwarding. That is, the loopback label is popped, the TTL is decremented and propagated (in this case) to the exposed label.

LSRT receives the packet and performs normal MPLS forwarding. If everything is functioning as expected this will cause the packet to arrive at LSRD with a TTL of 1.

In this example, we assume that all is working properly. The TTL expires at LSRD causing it to receive the packet LSRD notes the the interface and the label stack on which the packet was received and records these in a Downstream Verification TLV. The results are recorded in an MPLS Data Plane Verification Reply message and sent to LSRT.

If a FEC Stack TLV had been included, the procedures in [LSP-Ping] would be followed. Additionally, a Downstream Verification TLV would be included in the MPLS Echo Reply message.
3.1. Data Plane Verification Request / Reply Messages

Two new LSP Ping messages are defined for LSR self test. The purpose of the new messages is two fold. First the timestamps are removed to minimize processing. Second the message type allows simple recognition that minimal processing is necessary to service this request. The definitions of all fields are identical to those found in [LSP-PING].

The new message types are: (Provisionally; to be assigned)

<table>
<thead>
<tr>
<th>Type</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>MPLS Data Plane Verification Request</td>
</tr>
<tr>
<td>4</td>
<td>MPLS Data Plane Verification Reply</td>
</tr>
</tbody>
</table>

The messages have the following format:

```
0                   1                   2                   3  
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+--------------------------------------------+
|         Version Number        |         Must Be Zero          | 
+--------------------------------------------+
| Message Type | Reply mode | Return Code | Return Subcode|
+--------------------------------------------+
| Sender's Handle |
+--------------------------------------------+
| Sequence Number |
+--------------------------------------------+
| TLVs ... |
| . |
| . |
| . |
+--------------------------------------------+

The MPLS Data Plane Verification Request message MAY contain the following objects:

<table>
<thead>
<tr>
<th>Type #</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Pad</td>
</tr>
<tr>
<td>5</td>
<td>Vendor Enterprise Code</td>
</tr>
<tr>
<td>7 (tba)</td>
<td>IPv4 Downstream Verification Object</td>
</tr>
<tr>
<td>8 (tba)</td>
<td>IPv6 Downstream Verification Object</td>
</tr>
<tr>
<td>9 (tba)</td>
<td>IPv4 Reply-to Object</td>
</tr>
<tr>
<td>10 (tba)</td>
<td>IPv6 Reply-to Object</td>
</tr>
</tbody>
</table>
```
The MPLS Data Plane Verification Reply message MAY contain the following objects:

<table>
<thead>
<tr>
<th>Type #</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Pad</td>
</tr>
<tr>
<td>4</td>
<td>Error Code</td>
</tr>
<tr>
<td>5</td>
<td>Vendor Enterprise Code</td>
</tr>
<tr>
<td>7 (tba)</td>
<td>IPv4 Downstream Verification Object</td>
</tr>
<tr>
<td>8 (tba)</td>
<td>IPv6 Downstream Verification Object</td>
</tr>
</tbody>
</table>

3.2. Downstream Verification Object

The Downstream Verification Object is an optional TLV in an MPLS Echo Request or MPLS Verification Request message. Only one such object may appear. It’s presence signifies a request that a Downstream Verification Object be included in the corresponding reply message. The purpose of the object is to allow the upstream router to obtain the exact interface and label stack information as it appears at the replying LSR. It has two formats, type 7 for IPv4 and type 8 for IPv6 (to be assigned by IANA).

3.2.1. IPv4 Downstream Verification Object

In a request message the Length is always 12. In a reply message the length is 16 + 4*N octets, N is the number of Downstream Labels. The value field of a Downstream Verification TLV has the following format:
Flags

Two flags are defined as shown. All other flags are reserved and MUST be set to zero.

```
+-+-+-+-+-+-+-+-+
|0|0|0|0|0|0|V|R|
+-+-+-+-+-+-+-+-+
```

The R flag can only be set in a request message. It requests that the receiving router verify that the Downstream IPv4 Address is an address belonging to this router.

The V flag can only be set in a reply message. The flag is set as a positive verification response to a received R flag. If the R flag was not set in the request this Flag MUST be set to zero.
Address Type

The Address Type indicates if the interface is numbered or unnumbered and is set to one of the following values:

<table>
<thead>
<tr>
<th>Address Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Address</td>
<td>0</td>
</tr>
<tr>
<td>IPv4</td>
<td>1</td>
</tr>
<tr>
<td>Unnumbered</td>
<td>2</td>
</tr>
</tbody>
</table>

The value 0, "No Address" is only valid in a Verification Request message.

Reserved

MUST be set to zero on transmission and ignored on receipt.

Downstream IPv4 Address

If the address type is 'No Address', the address field MUST be set to zero and ignored on receipt.

If the address type is 'IPv4', the address field MUST either be set to the downstream LSR’s Router ID or the downstream LSR’s interface address.

If the address type is 'unnumbered', the address field MUST be set to the downstream LSR’s Router ID.

Downstream Interface Address

If the address type is 'IPv4', the interface address field MUST be set to the downstream LSR’s interface address.

If the address type is 'unnumbered', interface address field MUST be set to the index assigned by the downstream LSR to the interface.

Label Stack

The label stack of the received echo request message. If any TTL values have been changed by this router, they SHOULD be restored.
3.2.2. IPv6 Downstream Verification Object

In a request message the Length is always 24. In a reply message the length is $40 + 4 \times N$ octets, N is the number of Downstream Labels. The value field of a Downstream Verification TLV has the following format:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Flags     | Address Type  |            Reserved           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Downstream IPv6 Address                      |
| Downstream IPv6 Address (Cont.)                               |
| Downstream IPv6 Address (Cont.)                               |
| Downstream IPv6 Address (Cont.)                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Downstream Interface Address                                 |
| Downstream Interface Address (Cont.)                          |
| Downstream Interface Address (Cont.)                          |
| Downstream Interface Address (Cont.)                          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                Label Stack                                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```
Flags

Two flags are defined as shown. All other flags are reserved and MUST be set to zero.

```
+--------+
|0|0|0|0|0|0|V|R|
+--------+
```

The R flag can only be set in a request message. It requests that the receiving router verify that the Downstream IPv6 Address is an address belonging to this router.

The V flag can only be set in a reply message. The flag is set as a positive verification response to a received R flag. If the R flag was not set in the echo request this Flag MUST be set to zero.

Address Type

The Address Type indicates if the interface is numbered or unnumbered and is set to one of the following values:

<table>
<thead>
<tr>
<th>Address Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Address</td>
<td>0</td>
</tr>
<tr>
<td>IPv6</td>
<td>1</td>
</tr>
<tr>
<td>Unnumbered</td>
<td>2</td>
</tr>
</tbody>
</table>

The value 0, "No Address" is only valid in a Verification Request message.

Reserved

MUST be set to zero on transmission and ignored on receipt.
Downstream IPv6 Address

If the address type is ‘No Address’, the address field MUST be set to zero and ignored on receipt.

If the address type is ‘IPv6’, the address field MUST either be set to the downstream LSR’s Router ID or the downstream LSR’s interface address.

If the address type is ‘unnumbered’, the address field MUST be set to the downstream LSR’s Router ID.

Downstream Interface Address

If the address type is ‘IPv6’, the interface address field MUST be set to the downstream LSR’s interface address.

If the address type is ‘unnumbered’, first four octets of interface address field MUST be set to the index assigned by the downstream LSR to the interface. The remaining 12 octets MUST be set to zero.

Label Stack

The label stack of the received echo request message. If any TTL values have been changed by this router, they SHOULD be restored.

3.3. Reply-To Object

In order to perform detailed diagnostics of a particular failing flow in the face of ECMP, it is useful to be able to use the exact source and destination addresses of that flow. The Reply-To Object is an optional TLV in a MPLS Data Plane Verification Request message. The Object has two formats, type 9 for IPv4 and type 10 for IPv6 (to be assigned by IANA).
3.3.1. IPv4 Reply-To Object

The length of an IPv4 Reply-To Object is 5 octets; the value field has the following format:

```
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     Reply-to IPv4 Address                     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    DS-Byte    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Reply-to IPv4 Address

The address to which the MPLS Data Plane Verification Reply message is to be sent.

DS-Byte

The DS-Byte to be used in the MPLS Data Plane Verification Reply packet.

3.3.2. IPv6 Reply-To Object

The length of an IPv6 Reply-To Object is 17 octets; the value field has the following format:

```
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     Reply-to IPv6 Address                     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     Reply-to IPv6 Address (Cont.)               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    DS-Byte    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Swallow, et al. Standards Track [Page 14]
3.4. Sending procedures

In order to perform a test on an incoming label stack, an LSR first determines the expected outgoing label stack, next hop router and next hop interface.

The LSR creates an MPLS Data Plane Verification Request message and includes a Data Plane Verification Object. Optionally a FEC Stack TLV may be included. In this case an MPLS Echo Request Message MUST be used.

In normal use, the source address is set to an address belonging to the LSR and the destination set to an address in the range of 127/8. The IP TTL SHOULD be set to 1. The incoming label stack is prepended to the packet. The TTL of these labels SHOULD be set to appropriate values - 2 for those labels which will be process by this LSR when the packet is looped back; 1 for those labels which will be carried through. Finally the loopback label bound to the incoming interface is prepended to the packet. The TTL is set such that it will have the value of 3 on the wire.

The packet is sent to the upstream neighbor on an interface for which the loopback label is valid.

In diagnostic situations, the source and destination addresses MAY be set to any value. In this case, a Reply-to IPv4 or IPv6 Object MUST be included. The IP TTL MUST be set to 1. The TTL of labels other than the loopback label MUST be set to appropriate values - 2 for those labels which will be process by this LSR when the packet is looped back; 1 for those labels which will be carried through.
3.5. Receiving procedures

An LSR X that receives an MPLS Verification Request message formats a
MPLS Verification Reply message. The Sender’s Handle and Sequence
Number are copied from the Request message.

X then parses the packet to ensure that it is a well-formed packet,
and that the TLVs that are not marked "Ignore" are understood. If
not, X SHOULD send an MPLS echo reply with the Return Code set to
"Malformed echo request received" or "TLV not understood" (as
appropriate), and the Subcode set to zero. In the latter case, the
misunderstood TLVs (only) are included in the reply.

If the echo request is good, X notes the interface I over which the
echo was received, and the label stack with which it came. If the
MPLS echo request contained a Downstream Verification object, then X
must format this information as a Downstream Verification object and
include it in its MPLS echo reply message.

The source address of the Reply message MUST be an address of the
replying LSR. If the request included a Reply-to IPv4 or IPv6
Object, the MPLS Data Plane Verification Reply message MUST be sent
to that address. Otherwise the Reply message is sent to the source
address of the Verification Request message.

An LSR MUST be capable of filtering addresses that are to be replied
to. If a filter has been invoked (i.e. configured) and an address
does not pass the filter, then a reply MUST NOT be sent, and the
event SHOULD be logged.

3.6. Upstream Neighbor Verification

To verify that an upstream neighbor is properly echoing packets an
LSR may send an MPLS Data Plane Verification Request packet with the
TTL set so that the packet will expire upon reaching reaching itself.
This procedure not only tests that the neighbor is correctly
processing the loopback label, it also allow the node to verify the
neighbor’s interface mapping.
No TLVs need to be included in the MPLS Data Plane Verification Request. By noting the Sender’s Handle and Sequence Number, as well as the loopback label, LSRT is able to detect that a) the packet was looped, and b) determine (or verify) the interface on which the packet was received.

4. Security Considerations

Were loopback labels widely known, they might be subject to abuse. It is therefore RECOMMENDED that loopback labels only be shared between trusted neighbors. Further, if the loopback labels are drawn from the Global Label Space, or any other label space shared across multiple LDP sessions, it is RECOMMENDED that all loopback labels be filtered from a session except those labels pertaining to interfaces directly connected to the neighbor participating in that session.

5. IANA Considerations

TBD

6. Acknowledgments

The authors would like to thank Vanson Lim, Tom Nadeau, and Bob Thomas for their comments and suggestions.
7. References

7.1. Normative References

7.2. Informative References

8. Authors’ Addresses

Kireeti Kompella
Juniper Networks, Inc.
1194 N. Mathilda Ave.
Sunnyvale, CA 94089
Email: kireeti@juniper.net

George Swallow
Cisco Systems, Inc.
1414 Massachusetts Ave
Boxborough, MA 01719

Email: swallow@cisco.com

Dan Tappan
Cisco Systems, Inc.
1414 Massachusetts Ave
Boxborough, MA 01719

Email: tappan@cisco.com
9. Intellectual Property Notice

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF’s procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11 [RFC2028]. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

10. Full Copyright Statement

Copyright (C) The Internet Society (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

Swallow, et al. Standards Track [Page 19]
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.