A Profile for Autonomous System Provider Authorization
draft-ietf-sidrops-aspa-profile-00

Abstract

This document defines a standard profile for Autonomous System Provider Authorization in the Resource Public Key Infrastructure. An Autonomous System Provider Authorization is a digitally signed object that provides a means of verifying that a Customer Autonomous System holder has authorized a Provider Autonomous System to be its upstream provider and for the Provider to send prefixes received from the Customer Autonomous System in all directions including providers and peers.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 18, 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. 2
2. The ASPA Content Type ... 3
3. The ASPA eContent .. 3
 3.1. version .. 4
 3.2. AFI ... 4
 3.3. customerASID .. 4
 3.4. providerASID ... 4
4. ASPA Validation .. 5
5. ASN.1 Module for the ASPA Content Type 5
6. IANA Considerations ... 6
7. Security Considerations 7
8. Acknowledgments ... 7
9. References ... 7
 9.1. Normative References 7
 9.2. Informative References 8
Authors’ Addresses ... 8

1. Introduction

The primary purpose of the Resource Public Key Infrastructure (RPKI) is to improve routing security. (See [RFC6480] for more information.) As part of this infrastructure, a mechanism is needed to verify that a Provider AS (PAS) has permission from a Customer AS (CAS) holder to send routes in all directions. The digitally signed...
Autonomous System Provider Authorization (ASPA) object provides this verification mechanism.

The ASPA uses the template for RPKI digitally signed objects [RFC6488], which defines a Cryptographic Message Syntax (CMS) [RFC5652] wrapper for the ASPA content as well as a generic validation procedure for RPKI signed objects. As ASPAs need to be validated with RPKI certificates issued by the current infrastructure, we assume the mandatory-to-implement algorithms in [RFC6485], or its successor.

To complete the specification of the ASPA (see Section 4 of [RFC6488]), this document defines:

1. The object identifier (OID) that identifies the ASPA signed object. This OID appears in the eContentType field of the encapContentInfo object as well as the content-type signed attribute within the signerInfo structure.

2. The ASN.1 syntax for the ASPA content, which is the payload signed by the CAS. The ASPA content is encoded using the ASN.1 [X680] Distinguished Encoding Rules (DER) [X690].

3. The steps required to validate an ASPA beyond the validation steps specified in [RFC6488]).

2. The ASPA Content Type

The content-type for an ASPA is defined as id-cct-ASPA, which has the numerical value of 1.2.840.113549.1.9.16.1.TBD. This OID MUST appear both within the eContentType in the encapContentInfo structure as well as the content-type signed attribute within the signerInfo structure (see [RFC6488]).

3. The ASPA eContent

The content of an ASPA identifies the Customer AS (CAS) as well as the Provider AS (PAS) that is authorized to further propagate announcements received from the customer. If customer has multiple providers, it issues multiple ASPAs, one for each provider AS. An ASPA is formally defined as:
ct-ASPA CONTENT-TYPE ::=
 { ASProviderAttestation IDENTIFIED BY id-ct-ASPA }

id-ct-ASPA OBJECT IDENTIFIER ::= { id-ct TBD }

ASProviderAttestation ::= SEQUENCE {
 version [0] ASPAVersion DEFAULT v0,
 AFI AddressFamilyIdentifier,
 customerASID ASID,
 providerASID ASID }

ASPAVersion ::= INTEGER { v0(0) }

AddressFamilyIdentifier ::= INTEGER

ASID ::= INTEGER

Note that this content appears as the eContent within the
encapContentInfo as specified in [RFC6488].

3.1. version

The version number of the ASProviderAttestation MUST be v0.

3.2. AFI

The AFI field contains Address Family Identifier for which the
relation between customer and provider ASes is authorized. Presently
defined values for the Address Family Identifier field are specified
in the IANA’s Address Family Numbers registry [IANA-AF].

3.3. customerASID

The customerASID field contains the AS number of the Autonomous
System that authorizes an upstream provider (listed in the
providerASID) to propagate prefixes in the specified address family
other ASes.

3.4. providerASID

The providerASID contains the AS number that is authorized to further
propagate announcements in the specified address family received from
the customer.
4. ASPA Validation

Before a relying party can use an ASPA to validate a routing announcement, the relying party MUST first validate the ASPA object itself. To validate an ASPA, the relying party MUST perform all the validation checks specified in [RFC6488] as well as the following additional ASPA-specific validation step.

- The autonomous system identifier delegation extension [RFC3779] is present in the end-entity (EE) certificate (contained within the ASPA), and the customer AS number in the ASPA is contained within the set of AS numbers specified by the EE certificate’s autonomous system identifier delegation extension.

5. ASN.1 Module for the ASPA Content Type
RPKI-ASPA-2018
 (iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) modules(0) id-mod-rpki-aspa-2018(TBD))
DEFINITIONS IMPLICIT TAGS ::= BEGIN IMPORTS

CONTENT-TYPE
FROM CryptographicMessageSyntax-2010 -- RFC 6268
 (iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) modules(0) id-mod-cms-2009(58)) ;

ContentSet CONTENT-TYPE ::= { ct-ASPA, ... }

-- -- ASPA Content Type

id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) 16 }

id-ct OBJECT IDENTIFIER ::= { id-smime 1 }

id-ct-ASPA OBJECT IDENTIFIER ::= { id-ct TBD }

ct-ASPA CONTENT-TYPE ::= { TYPE ASProviderAttestation IDENTIFIED BY id-ct-ASPA }

ASProviderAttestation ::= SEQUENCE {
 version [0] ASPAVersion DEFAULT v0,
 AFI AddressFamilyIdentifier,
 customerASID ASID,
 providerASID ASID }

ASPAVersion ::= INTEGER { v0(0) }

AddressFamilyIdentifier ::= INTEGER

ASID ::= INTEGER

END

6. IANA Considerations

Please add the id-mod-rpki-aspa-2018 to the SMI Security for S/MIME Module Identifier (1.2.840.113549.1.9.16.0) registry
(https://www.iana.org/assignments/smi-numbers/smi-numbers.xml#security-smime-0) as follows:
Please add the ASPA to the SMI Security for S/MIME CMS Content Type (1.2.840.113549.1.9.16.1) registry (https://www.iana.org/assignments/smi-numbers/smi-numbers.xml#security-smime-1) as follows:

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>id-ct-ASPA</td>
<td>[ThisRFC]</td>
</tr>
</tbody>
</table>

Please add the ASPA to the RPKI Signed Object registry (https://www.iana.org/assignments/rpki/rpki.xhtml#signed-objects) as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>OID</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPA</td>
<td>1.2.840.113549.1.9.16.1.TBD</td>
<td>[ThisRFC]</td>
</tr>
</tbody>
</table>

7. Security Considerations

8. Acknowledgments

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

Alexander Azimov
Yandex

Email: a.e.azimov@gmail.com

Eugene Uskov
Qrator Labs

Email: eu@qrator.net

Randy Bush
Internet Initiative Japan

Email: randy@psg.com
Keyur Patel
Arrcus, Inc.

Email: keyur@arrcus.com

Job Snijders
NTT Communications
Theodorus Majofskistraat 100
Amsterdam 1065 SZ
The Netherlands

Email: job@ntt.net

Russ Housley
Vigil Security, LLC
918 Spring Knoll Drive
Herndon, VA 20170
USA

Email: housley@vigilsec.com