Abstract

Some networks are expected to support IPv4-only, dual-stack, and IPv6-only hosts at the same time. Such networks also want to IPv6/IPv4 translation for the IPv6-only host so it can access servers on the IPv4 Internet. On such a network, the synthesized AAAA responses from a DNS64 can cause traffic to be translated. This document describes two solutions to avoid that translation: modifying default address selection on the host, and using DHCP to configure different DNS recursive resolvers.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on July 11, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the BSD License.

Table of Contents

1. Introduction ... 3
2. Terminology ... 3
3. Procedures to support IPv6-only and dual-stack hosts with DNS64 ... 3
 3.1. Modify Host’s Address Selection Rules 3
 3.1.1. Host Transition ... 4
 3.1.2. Limitations .. 5
 3.1.3. Examples .. 5
 3.2. Use DHCP to Assign Appropriate DNS Server 5
 3.2.1. Host Requirements .. 6
 3.2.2. DHCPv4 and DHCPv6 Server Requirements 7
 3.2.3. DHCP Server Operation 7
 3.2.4. Host Transition .. 8
 3.2.5. Limitations .. 9
4. Security Considerations ... 9
5. Acknowledgements .. 9
6. IANA Considerations .. 9
7. References .. 9
 7.1. Normative References ... 9
 7.2. Informative References 10
8. Author’s Address .. 11
1. Introduction

In order to access IPv4 servers, an IPv6-only host needs to use an IPv6/IPv4 translator and a DNS64 recursive resolver. However, if a dual-stack host uses that same DNS64 recursive resolver, the dual-stack host will send traffic through the IPv6/IPv4 translator (when such traffic could have been sent using IPv4). Thus, as an optimization it is desirable to avoid IPv6/IPv4 translation.

If the dual-stack host’s IPv4 traffic is being NATted the difference is NAT44 versus NAT64, so the performance and saleability concern is nearly identical. However, at least one application breaks when translated between IP address families unless special measures are taken [I-D.ietf-behave-ftp64].

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

"IPv4-only" means a host that has only IPv4 address(es) assigned to its interface(s). "Dual-stack" means a host that has an IPv4 address and an IPv6 address assigned to its interface(s). "IPv6-only" means a host that has only IPv6 address(es) assigned to its interface(s).

3. Procedures to support IPv6-only and dual-stack hosts with DNS64

Two solutions are proposed in this section: the first solution is to modify the dual-stack host’s default address selection rules [RFC3484], [I-D.arifumi-6man-rfc3484-revise]. The second solution involves the DHCPv4 and DHCPv6 servers replying with the appropriate DNS server for the host.

3.1. Modify Host’s Address Selection Rules

The default address selection rules [RFC3484] prefer IPv6 over IPv4. This means, for a dual-stack host, that IPv6 will be preferred (if available) over IPv4. If a dual-stack host is configured to use a DNS64 server, that DNS64 server will synthesize an AAAA response if there is an A record. Thus, the dual-stack host will always use IPv6 if a DNS lookup was involved, even if IPv4 could have been used more optimally.

Note: If both a NAT44 and NAT64 are deployed on the same network, roughly the same inefficiency occurs (that is, NAT state is
created). However, it is generally considered better to perform
NAT44 than NAT64, because NAT64 translates between IP address
families which can have side effects (e.g., FTP).

To avoid this, the host’s default address selection rules [RFC3484]
can be modified so that IPv4 is preferred over the IPv6/IPv4
translator’s prefix. At the same time, native IPv6 can still be
preferred over IPv4. This is accomplished by adding the network’s
IPv6/IPv4 translator’s prefix as the lowest Precedence in the address
selection rules.

If the IPv6/IPv4 translator’s prefix is the IANA-assigned well-known
prefix (64:FF9B::/96, as assigned in
[I-D.ietf-behave-address-format]), this can be hard-coded or easily
scripted into the system startup. However, if the IPv6/IPv4
translator’s prefix is a network-specific prefix (NSP, as described
in [I-D.ietf-behave-address-format]), the default address selection
rules can be modified only after the host learns its currently-
connected network’s IPv6/IPv4 translator’s prefix (e.g., using
[I-D.wing-behave-learn-prefix]).

On some operating systems, the address selection rules can be
configured using a command line utility (e.g., Windows, FreeBSD),
without new software in the host’s IP stack. Other operating systems
are not as accommodating of this solution (see Section 3.1.2).

Note: it may be desirable to create a standard to adjust a host’s
address selection rules, perhaps using DHCPv6. This is a topic
for the IPv6 maintenance working group [6man]. This automatic
mechanism may involve modifications to the host’s IP stack,
depending on how the operating system supports obtaining newly-
defined DHCPv6 options.

3.1.1. Host Transition

An IPv6-only and a dual-stack host can both be configured with the
same address selection rules (namely, both can add the network’s
translator as the lowest Precedence). This is because the IPv6-only
host will never use IPv4 (because it lacks an IPv4 address) and will
thus fall through and use the IPv6 address synthesized by the DNS64
containing the IPv6/IPv4 translator’s prefix (that is, as shown in
the examples, the IPv6-only host will use the Precedence 3 entry in
the default policy table). The dual-stack host, if it receives an
AAAA response, will prefer use IPv6; if it receives only an A
response, it will prefer to use IPv4 (using Precedence 10 for IPv4-
mapped addresses defined in Section 2.5.4 of [RFC2373]).
3.1.2. Limitations

OSX does not implement a [RFC3484] or [RFC3484]-like policy table.

3.1.3. Examples

For example, if a network is using the IANA-assigned WKP 64:FF9B::/96 [I-D.ietf-behave-address-format] and a host is using the new default policy table from [I-D.arifumi-6man-rfc3484-revise] (which added Precedence 5 for Teredo), the host’s new policy table would contain one new entry with Precedence 3, as shown below:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Precedence</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>::/128</td>
<td>50</td>
<td>0 # localhost</td>
</tr>
<tr>
<td>::/0</td>
<td>30</td>
<td>2 # IPv6 native</td>
</tr>
<tr>
<td>2002::/16</td>
<td>20</td>
<td>3 # 6to4</td>
</tr>
<tr>
<td>::ffff:0:0/96</td>
<td>10</td>
<td>4 # IPv4-mapped</td>
</tr>
<tr>
<td>2001::/32</td>
<td>5</td>
<td>5 # Teredo</td>
</tr>
<tr>
<td>64:FF9B::/96</td>
<td>3</td>
<td>6 # 6/4 translator’s prefix</td>
</tr>
</tbody>
</table>

As another example, if a network has the prefix 2001:0DB8::/32 and the NAT64 is using the network-specific prefix (NSP) 2001:0DB8:AAAA::/96, and the host is using the new default policy table from [I-D.arifumi-6man-rfc3484-revise] (which added Precedence 5 for Teredo), the host’s new policy table would contain one new entry with Precedence 3, as shown below:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Precedence</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>::/128</td>
<td>50</td>
<td>0 # localhost</td>
</tr>
<tr>
<td>::/0</td>
<td>30</td>
<td>2 # IPv6 native</td>
</tr>
<tr>
<td>2002::/16</td>
<td>20</td>
<td>3 # 6to4</td>
</tr>
<tr>
<td>::ffff:0:0/96</td>
<td>10</td>
<td>4 # IPv4-mapped</td>
</tr>
<tr>
<td>2001::/32</td>
<td>5</td>
<td>5 # Teredo</td>
</tr>
<tr>
<td>2001:0DB8:AAAA::/96</td>
<td>3</td>
<td>6 # 6/4 translator’s prefix</td>
</tr>
</tbody>
</table>

3.2. Use DHCP to Assign Appropriate DNS Server

Note: due to the limitations of this solution (see Section 3.2.5), it may have little or no value.

To avoid unnecessary traffic through a translator, it is desirable to configure IPv4-only and dual-stack hosts with a ‘normal’ DNS recursive resolver.

However, it is necessary to configure IPv6-only hosts with a DNS64 [I-D.ietf-behave-dns64] recursive resolver so those hosts can use an IPv6/IPv4 translator and access servers on the IPv4 Internet.
It is difficult to provide different DNS servers to those types of hosts, because there is no existing protocol that declares a host is IPv4-only, dual-stack, or IPv6-only.

This document describes how a network’s DHCPv4 and DHCPv6 servers, combined with a client-identifiers [RFC4361] chosen by the host, can determine if a host is IPv4-only, dual-stack, or IPv6-only, and assign the correct DNS server according to that determination.

Note: the DHCP mechanism described in this section have some overlap with the Multiple Interfaces Working Group [mif] and with split-zone DNS [I-D.savolainen-mif-dns-server-selection].

Both an IPv4-only host and a dual-stack host obtain an IPv4 network address. Today, hosts most commonly obtain an IPv4 address using DHCPv4 [RFC2131]. An IPv6-only host does not obtain an IPv4 address; however, it may be using DHCPv6 to obtain other information (e.g., NTP servers). The following procedure takes advantage of that difference to determine if a host is IPv4-only, dual-stack, or IPv6-only.

3.2.1. Host Requirements

The host has the following requirements:

1. if the host uses IPv4, it MUST use DHCPv4 to learn its IPv4 address and its DNS server address(es); and,

2. if the host uses IPv6, it MUST use DHCPv6 to learn its IPv6 DNS resolver, using the Information-Request message described in Section 18.1.5 of [RFC3315] and using [RFC3646]; and,

3. the host MUST use client-identifiers [RFC4361] to identify itself to its DHCP server(s), and MUST use the same client-identifier for both DHCPv4 and DHCPv6.

 Note: This last requirement is stronger than the SHOULD in Section 6.2 of [RFC4361]

 If the host does not support DHCP authentication, and acquires/releases its IPv4 address while keeping its IPv6 address, it MUST support the procedure described in Section 3.2.4; and,

4. the host MUST support the DHCP Information Refresh Time Option [RFC4242].
3.2.2. DHCPv4 and DHCPv6 Server Requirements

The DHCPv4 and DHCPv6 servers have the following requirements:

1. the DHCPv4 and DHCPv6 servers MUST be able to communicate with each other both client-identifiers [RFC4361] and if an IPv4 address is assigned to that client-identifier; and,

2. If the DHCP server and the host support DHCP authentication, the DHCP server MUST support the procedure described in Section 3.2.4.

3. MUST support the DHCP Information Refresh Time Option [RFC4242].

3.2.3. DHCP Server Operation

If the DHCP server first receives a DHCPv4 request for a particular client-identifier, it responds with the ‘normal’ DNS resolver. The DHCPv6 server remembers that RFC4361 client identity and if the DHCPv6 server sees a DHCPv6 request from that same client identity, it responds to the DHCPv6 request with a ‘normal’ DNS resolver.

If the DHCP server first receives a DHCPv6 request for a particular client-identifier, it responds with a short information refresh time [RFC4242] (e.g., 30 seconds) and a DNS64 recursive resolver.

Note-1: This means that during the short information refresh time, both a dual-stack host and an IPv6-only will have their DNS queries processed by the DNS64 recursive resolver. During that time, both the dual-stack host and the IPv6-only host will get connectivity to IPv4 servers, but the dual-stack host will use the IPv6/IPv4 translator until the information refresh time expires.

Note-2: for discussion: Consider have DHCP server slightly delay (e.g., 100ms) responding to a DHCPv6 request. This gives a chance for the DHCPv4 request to be received, thus avoiding the issue described in Note-1.

After the short information refresh time, the DHCPv6 client will send a new request. By that time, the DHCPv6 server will have either:

a. have seen a DHCPv4 request from the same RFC4361 host. This indicates the host supports dual-stack. The DHCP server should extend the DHCPv6 lease, and provide a ‘normal’ DNS server (instead of the DNS64 server).

b. have not seen a DHCPv4 request from the same RFC4361 host. This indicates the host is IPv6-only. The DHCP server should extend
the DHCPv6 lease and continue providing the same DNS64 server.

3.2.4. Host Transition

During natural evolution of a network or because of debugging/troubleshooting, a host might transition between IPv4-only, dual-stack, or IPv6-only. When the host acquires or releases its IPv4 address it transitions to needing a different DNS server; if the host has an IPv4 address, it needs a ‘normal’ DNS server and if it does not have an IPv4 address it needs a DNS64 server.

There are two transitions considered, where the host transitions:

1. from IPv6-only to IPv4-supporting (that is, IPv4-only or dual-stack),
2. from IPv4-supporting (that is, IPv4-only or dual-stack) to IPv6-only.

When doing (1), the DHCPv4 server will provide a ‘normal’ DNS server (because the DHCPv4 server sees the same client-identifier as seen by the DHCPv6 server). So case (1) is solved.

However, when doing (2), the host is giving up its IPv4 address and is currently using a normal DNS server, but needs to be told to use a DNS64 server instead. There are two mechanisms to provide that function, based on the network and host’s support of DHCP authentication (Section 19.1.1 of [RFC3315])

1. with DHCP authentication: When a certain client identifier loses or acquires its IPv4 address and also has an IPv6 address, the DHCPv6 server MUST send a DHCP RECONFIGURE message [RFC3315] to the host and SHOULD include the Option Request option indicating the DNS server information has changed. The RECONFIGURE message triggers the host to send a new Information-Request message to the DHCPv6 server.

2. without DHCP authentication: the host, when keeping its IPv6 address and releasing its IPv4 address, MUST also issue a new DHCPv6 Information-Request message to the DHCPv6 server.

In both cases, the Information-Request message causes the DHCPv6 server to reply with a DNS64 recursive resolver, as discussed in Section 3.2.2.
3.2.5. Limitations

- A network with mixed IPv4-only/dual-stack hosts and IPv6-only hosts needs to have a mix of DNS configurations for those hosts. Thus, mechanisms that advertise the same DNS servers to all hosts cannot be used on such networks (e.g., IPv6 router advertisements).

- Windows does not support [RFC4361].

- OSX does not support DHCPv6.

4. Security Considerations

TBD.

5. Acknowledgements

Thanks to Ralph Droms, Marcelo Braun, Dave Thaler for their review comments.

This document was produced using version 1.35pre1 of XML2RFC.

6. IANA Considerations

This document has no actions for IANA.

7. References

7.1. Normative References

[I-D.ietf-behave-dns64]

7.2. Informative References

[6man] IETF, "IPv6 Maintenance Working Group", 2009,

Considered for RFC 3484 Revision",
draft-arifumi-6man-rfc3484-revise-02 (work in progress),
October 2009.

[I-D.iertf-behave-address-format] Huitema, C., Bao, C., Bagnulo, M., Boucadair, M., and X.
Li, "IPv6 Addressing of IPv4/IPv6 Translators",
draft-ietf-behave-address-format-03 (work in progress),
December 2009.

[I-D.iertf-behave-ftp64] Beijnum, I., "IPv6-to-IPv4 translation FTP
considerations",
draft-ietf-behave-ftp64-00 (work in progress),
December 2009.

[I-D.savolainen-mif-dns-server-selection] Savolainen, T., "DNS Server Selection on Multi-Homed
Hosts",
draft-savolainen-mif-dns-server-selection-01 (work
in progress), October 2009.

Author’s Address

Dan Wing
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134
USA

Email: dwing@cisco.com