Definitions of Managed Objects
for the DS3 Interface Type

Status of this Memo

This memo defines objects for managing DS3 Interface objects for use
with the SNMP protocol. This memo is a product of the SNMP and
Transmission MIB Working Group of the Internet Engineering Task Force
(IETF). This RFC specifies an IAB standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "IAB
Official Protocol Standards" for the standardization state and status
of this protocol. Distribution of this memo is unlimited.

Table of Contents

1. Abstract .. 1
2. The Network Management Framework 2
3. Objects .. 2
3.1 Format of Definitions 3
4. Overview .. 3
4.1 Binding between Interfaces and CSUs 3
4.2 Objectives of this MIB Module 3
4.3 DS3 Terminology 3
5. Object Definitions 5
5.1 The DS3 Configuration Group 6
5.2 The DS3 Interval Group 11
5.3 The DS3 Current Group 14
5.4 The DS3 Total Group 17
6. Acknowledgments .. 20
7. References .. 22
8. Security Considerations 23
9. Authors’ Addresses 23

1. Abstract

This memo defines an experimental portion of the Management
Information Base (MIB) for use with network management protocols in
TCP/IP-based internets. In particular, this memo defines MIB objects
for representing DS3 physical interfaces. Implementors should consult in addition to this memo the companion document that
describes that DS1 managed objects.

2. The Network Management Framework

The Internet-standard Network Management Framework consists of three components. They are:

- **RFC 1155** which defines the SMI, the mechanisms used for describing and naming objects for the purpose of management. **RFC 1212** defines a more concise description mechanism, which is wholly consistent with the SMI.

- **RFC 1156** which defines MIB-I, the core set of managed objects for the Internet suite of protocols. **RFC 1213**, defines MIB-II, an evolution of MIB-I based on implementation experience and new operational requirements.

- **RFC 1157** which defines the SNMP, the protocol used for network access to managed objects.

The Framework permits new objects to be defined for the purpose of experimentation and evaluation.

3. Objects

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) [7] defined in the SMI. In particular, each object has a name, a syntax, and an encoding. The name is an object identifier, an administratively assigned name, which specifies an object type. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the OBJECT DESCRIPTOR, to also refer to the object type.

The syntax of an object type defines the abstract data structure corresponding to that object type. The ASN.1 language is used for this purpose. However, the SMI [3] purposely restricts the ASN.1 constructs which may be used. These restrictions are explicitly made for simplicity.

The encoding of an object type is simply how that object type is represented using the object type’s syntax. Implicitly tied to the notion of an object type’s syntax and encoding is how the object type is represented when being transmitted on the network. The SMI specifies the use of the basic encoding rules of ASN.1 [8], subject to the additional requirements imposed by the SNMP.
3.1. Format of Definitions

Section 5 contains the specification of all object types contained in this MIB module. The object types are defined using the conventions defined in the SMI, as amended by the extensions specified in [13].

4. Overview

These objects are used when the particular media being used to realize an interface is a DS3 interface. At present, this applies to these values of the ifType variable in the Internet-standard MIB:

\[
\text{ds3 (30)}
\]

The definitions contained herein are based on the DS3 specifications in ANSI T1.102-1987, ANSI T1.107-1988, and ANSI T1.404-1989 [9,10,11].

4.1. Binding between Interfaces and CSUs

Each agent which resides on a host which uses DS3 interfaces is required to assign a small, positive integer uniquely to each CSU. This is known as the "CSUIndex", and is used to distinguish between different CSUs attached to a node. The CSUIndex is also used as the "key" when accessing tabular information about DS3 interfaces.

The ds3Index column of the DS3 Configuration table relates each CSU to its corresponding interface in the Internet-standard MIB.

4.2. Objectives of this MIB Module

There are numerous things that could be included in a MIB for DS3 signals: the management of multiplexors, CSUs, DSUs, and the like. The intent of this document is to facilitate the common management of CSUs, both in-chassis and external via proxy. As such, a design decision was made up front to very closely align the MIB with the set of objects that can generally be read from CSUs that are currently deployed.

4.3. DS3 Terminology

The terminology used in this document to describe error conditions on a DS3 circuit as monitored by a DS3 CSU are from the ANSI T1M1.3/90 draft standard [12].

Out of Frame (OOF) event

An OOF event is detected when any three or more errors in
sixteen or fewer consecutive F-bits occur within a DS3 M-frame. An OOF event is cleared when reframe occurs.

Loss of Signal (LOS)
This state is declared upon observing 175 +/- 75 contiguous pulse positions with no pulses of either positive or negative polarity.

Coding Violation (CV)
For all DS3 applications, a coding violation is a P-bit Parity Error event. A P-bit Parity Error event is the occurrence of a received P-bit code on the DS3 M-frame that is not identical to the corresponding locally-calculated code. For C-Bit Parity applications, it is also the occurrence of a received CP-Bit parity violation. For SYNTRAN applications, it is also the occurrence of a received CRC-9 code that is not identical to the corresponding locally calculated code.

Bipolar Violation (BPV)
A bipolar violation, for B3ZS-coded signals, is the occurrence of a received bipolar violation that is not part of a zero-substitution code. For B3ZS-coded signals, a bipolar violation may also include other error patterns such as: three or more consecutive zeros and incorrect parity.

Errored Seconds (ES)
An ES is a second with one or more Coding Violation OR one or more Out of Frame events OR an AIS.

Severely Errored Seconds (SES)
A SES is a second with 44 or more Coding Violations OR one or more Out of Frame events OR an AIS.

Severely Errored Framing Seconds (SEFS)
A SEFS is a second with one or more Out of Frame events.

Unavailable Seconds (UAS)
UAS are calculated by counting the number of seconds that the CSU is in the Unavailable signal state (i.e., declared a Red Alarm or a Yellow Alarm), including the initial 10 seconds to enter the state but not including the 10 seconds to exit the state.

Note that any second that may be counted as an UAS may not be counted as an ES or a SES. Since the 10 SESs that comprise the transition from the available to unavailable
signal state may also be counted as ESs and SESs previous to entering the state, these three counters are adjusted so that any second counted during this transition is then subtracted. The 10 seconds in the transition from unavailable to available may be counted as ESs.

A special case exists when the 10 or more second period crosses the 900 second statistics window boundary, as the foregoing description implies that the SES and UAS counters must be adjusted when the Unavailable Signal State is entered. Clearly, successive GETs of the affected ds3IntervalSES and ds3IntervalUAS objects will return differing values if the first GET occurs during the first few seconds of the window. This is viewed as an unavoidable side-effect of selecting the presently defined managed objects as a basis for this memo.

Yellow Alarm
The Yellow Alarm is declared after detecting the Yellow Signal. See ANSI T1.107-1989 [10].

Red Alarm
The Red Alarm is declared after detecting a Loss of Signal, a Loss of Frame (a persistent OOF event), or an Alarm Indication Signal, see [10] for at least 2-10 seconds. The Red Alarm is cleared at the onset of 10 consecutive seconds with no SES.

Circuit Identifier
This is a character string specified by the circuit vendor, and is useful when communicating with the vendor during the troubleshooting process.

5. Object Definitions

RFC1233-MIB DEFINITIONS ::= BEGIN

IMPORTS
 experimental, Counter
 FROM RFC1155-SMI
 DisplayString
 FROM RFC1158-MIB
 OBJECT-TYPE
 FROM RFC-1212;

-- This MIB module uses the extended OBJECT-TYPE macro
-- as defined in [13].
-- this is the MIB module for the DS3 objects

ds3 OBJECT IDENTIFIER ::= { experimental 15 }

-- the DS3 Configuration group

-- Although the objects in this group are read-only, at
-- the agent’s discretion they may be made read-write
-- so that the management station, when appropriately
-- authorized, may change the behavior of the CSU,
-- e.g., to place the device into a loopback state.

-- Implementation of this group is mandatory for all
-- systems that attach to a DS3 Interface.

ds3ConfigTable OBJECT-TYPE
SYNTAX SEQUENCE OF DS3ConfigEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
 "The DS3 Configuration table."
 ::= { ds3 1 }

ds3ConfigEntry OBJECT-TYPE
SYNTAX DS3ConfigEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
 "An entry in the DS3 Configuration table."
INDEX { ds3CSUIndex }
 ::= { ds3ConfigTable 1 }

DS3ConfigEntry ::= SEQUENCE {
 ds3CSUIndex
 INTEGER,
 ds3Index
 INTEGER,
 ds3TimeElapsed
 INTEGER (1..900),
 ds3ValidIntervals
 INTEGER (0..96),
 ds3LineType
 INTEGER,
 ds3ZeroCoding
 INTEGER,
 ds3Loopback
 INTEGER,
}
ds3SendCode
 INTEGER,
ds3YellowAlarm
 INTEGER,
ds3RedAlarm
 INTEGER,
ds3CircuitIdentifier
 DisplayString (SIZE (0..255))

}

ds3CSUIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The index value which uniquely identifies the
 CSU to which this entry is applicable."
::= { ds3ConfigEntry 1 }

ds3Index OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "An index value that uniquely identifies a DS3
 Interface. The interface identified by a
 particular value of this index is the same
 interface as identified by the same value an
 ifIndex object instance."
::= { ds3ConfigEntry 2 }

ds3TimeElapsed OBJECT-TYPE
SYNTAX INTEGER (1..900)
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of seconds, including partial
 seconds, that have elapsed since the beginning of
 the current error-measurement period."
::= { ds3ConfigEntry 3 }

ds3ValidIntervals OBJECT-TYPE
SYNTAX INTEGER (0..96)
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of previous intervals for which valid
 data was collected. The value will be 96 unless
the CSU device was brought online within the last 24 hours, in which case the value will be the number of complete 15 minute intervals the CSU has been online."

::= { ds3ConfigEntry 4 }

ds3LineType OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 ds3M23(2),
 ds3SYNTRAN(3),
 ds3CbitParity(4),
 ds3ClearChannel(5)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable indicates the variety of DS3 C-bit application implementing this circuit. The type of circuit affects the interpretation of the usage and error statistics. The rate of all of them is 44.736 Mbps.

The values, in sequence, describe:

 TITLE: SPECIFICATION:
 ds3M23 ANSI T1.107-1988 [10]
 ds3SYNTRAN ANSI T1.107-1988 [10]
 ds3C-bitParity ANSI T1.107a-1989 [10a]
 ds3ClearChannel ANSI T1.102-1987 [9]
"

::= { ds3ConfigEntry 5 }

ds3ZeroCoding OBJECT-TYPE
SYNTAX INTEGER {
 ds3other(1),
 ds3B3ZS(2)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable describes the variety of Zero Code Suppression used on the link, which in turn affects a number of its characteristics. ds3B3ZS refers to the use of specified patterns of normal bits and bipolar violations which are used to replace sequences of zero bits of a specified length."

::= { ds3ConfigEntry 6 }
ds3Loopback OBJECT-TYPE
 SYNTAX INTEGER {
 ds3NoLoop(1),
 ds3LocalLoopbackLocalSide(2),
 ds3LocalLoopbackRemoteSide(3),
 ds3RemoteLoopbackLocalSide(4),
 ds3RemoteLoopbackRemoteSide(5)
 }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "This variable represents the loopback state of
 the CSU. Devices supporting read/write access
 should return badValue in response to a requested
 loopback state that the CSU does not support. The
 values mean:

 ds3NoLoop
 Not in the loopback state. A device that is
 not capable of performing a loopback on
 either interface shall always return this as
 it’s value.

 ds3LocalLoopbackLocalSide
 Signal received from the local side of the
 device is looped back at the local connector
 (eg, without involving the CSU).

 ds3LocalLoopbackRemoteSide
 Signal received from the local side of the
 device is looped back at the remote connector
 (eg, through the CSU).

 ds3RemoteLoopbackLocalSide
 Signal received from the remote side of the
 device is looped back at the local connector
 (eg, through the CSU).

 ds3RemoteLoopbackRemoteSide
 Signal received from the remote side of the
 device is looped back at the remote connector
 (eg, without involving the CSU).

 Note that M23 and ClearChannel interfaces do not
 support the Loopback managed object."
 ::= { ds3ConfigEntry 7 }
ds3SendCode OBJECT-TYPE
SYNTAX INTEGER {
 ds3SendTestMessage(1),
 ds3SendNoCode(2),
 ds3SendSetCode(3),
 ds3SendLoopbackCode(4),
 ds3SendResetCode(5)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION "This variable indicates what type of code is being sent across the DS1 circuit by the CSU. The values mean:

 ds3SendNoCode
 sending looped or normal data

 ds3SendSetCode
 sending a loopback request

 ds3SendLoopbackCode
 sending the code to choose a specific loopback

 ds3SendResetCode
 sending a loopback termination request

 ds3SendTestMessage
 sending a Test pattern as defined in T1.107a-1989 [10a]."
::= { ds3ConfigEntry 8 }
ds3RedAlarm(1),
ds3NoRedAlarm(2)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable indicates if a Red Alarm
condition exists."
::= { ds3ConfigEntry 10 }

ds3CircuitIdentifier OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable contains the transmission
vendor’s circuit identifier, for the
purpose of facilitating troubleshooting."
::= { ds3ConfigEntry 11 }

-- the DS3 Interval group

-- Implementation of this group is mandatory for all
-- systems that attach to a DS3 interface.

-- The DS3 Interval Table contains various statistics
-- collected by each CSU over the previous 24 hours of
-- operation. The past 24 hours are broken into 96
-- completed 15 minute intervals.

ds3IntervalTable OBJECT-TYPE
SYNTAX SEQUENCE OF DS3IntervalEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The DS3 Interval table."
::= { ds3 2 }

ds3IntervalEntry OBJECT-TYPE
SYNTAX DS3IntervalEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"An entry in the DS3 Interval table."
INDEX { ds3IntervalIndex, ds3IntervalNumber }
::= { ds3IntervalTable 1 }
DS3IntervalEntry ::=
SEQUENCE {
 ds3IntervalIndex
 INTEGER,
 ds3IntervalNumber
 INTEGER (1..96),
 ds3IntervalESs
 Counter,
 ds3Interval SESs
 Counter,
 ds3IntervalSEFSs
 Counter,
 ds3IntervalUASs
 Counter,
 ds3IntervalCSSs
 Counter,
 ds3IntervalBPVs
 Counter,
 ds3IntervalCVs
 Counter
}

ds3IntervalIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The index value which uniquely identifies the
CSU to which this entry is applicable. The
interface identified by a particular value of
this index is the same interface as identified
by the same value an DS3CSUIndex object
instance."
::= { ds3IntervalEntry 1 }

ds3IntervalNumber OBJECT-TYPE
SYNTAX INTEGER (1..96)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A number between 1 and 96, where 1 is the most
recently completed 15 minute interval and 96 is
the least recently completed 15 minutes
interval (assuming that all 96 intervals are
valid)."
::= { ds3IntervalEntry 2 }
ds3IntervalESs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Errored Seconds, as defined by [12], encountered
by a DS3 CSU in one of the previous 96,
individual 15 minute, intervals."
::= { ds3IntervalEntry 3 }

ds3IntervalSESs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Severely Errored Seconds, as defined by [12],
encountered by a DS3 CSU in one of the previous
96, individual 15 minute, intervals."
::= { ds3IntervalEntry 4 }

ds3IntervalSEFSs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Severely Errored Framing Seconds, as defined by
[12], encountered by a DS3 CSU in one of the
previous 96, individual 15 minute, intervals."
::= { ds3IntervalEntry 5 }

ds3IntervalUASs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Unavailable Seconds, as defined by [12],
encountered by a DS3 CSU in one of the previous
96, individual 15 minute, intervals."
::= { ds3IntervalEntry 6 }

ds3IntervalCSSs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

"The counter associated with the number of Controlled Slip Seconds, as defined by [12], encountered by a DS3 CSU in one of the previous 96, individual 15 minute, intervals.

Note that SYNTRAN interfaces are the only interfaces that support the Controlled Slip Seconds managed object. Accordingly, agents configured with non-SYNTRAN interfaces may treat this object as having an ACCESS clause value of not-accessible."

::= { ds3IntervalEntry 7}

ds3IntervalBPVs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Bipolar Violations, as defined by [12], encountered by a DS3 CSU in one of the previous 96, individual 15 minute, intervals."

::= { ds3IntervalEntry 8 }

ds3IntervalCVs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Coding Violations, as defined by [12], encountered by a DS3 CSU in one of the previous 96, individual 15 minute, intervals."

::= { ds3IntervalEntry 9 }

-- the DS3 Current group

-- Implementation of this group is mandatory for all systems
-- that attach to a DS3 Interface.

-- The DS3 current table contains various statistics being
-- collected for the current 15 minute interval.
ds3CurrentTable OBJECT-TYPE
SYNTAX SEQUENCE OF DS3CurrentEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
 "The DS3 Current table."
::= { ds3 3 }

ds3CurrentEntry OBJECT-TYPE
SYNTAX DS3CurrentEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
 "An entry in the DS3 Current table."
INDEX { ds3CurrentIndex }
::= { ds3CurrentTable 1 }

DS3CurrentEntry ::= SEQUENCE {
 ds3CurrentIndex
 INTEGER,
 ds3CurrentESs
 Counter,
 ds3CurrentSESs
 Counter,
 ds3CurrentSEFSs
 Counter,
 ds3CurrentUASs
 Counter,
 ds3CurrentCSSs
 Counter,
 ds3CurrentBPVs
 Counter,
 ds3CurrentCVs
 Counter
}

ds3CurrentIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The index value which uniquely identifies the CSU
to which this entry is applicable. The interface
identified by a particular value of this index is
the same interface as identified by the same value
an DS3CSUIndex object instance."
::= { ds3CurrentEntry 1 }
ds3CurrentESs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Errored Seconds, as defined by [12], encountered by a DS3 CSU in the current 15 minute interval."
::= { ds3CurrentEntry 2 }

ds3CurrentSESs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Severely Errored Seconds, as defined by [12], encountered by a DS3 CSU in the current 15 minute interval."
::= { ds3CurrentEntry 3 }

ds3CurrentSEFSs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Severely Errored Framing Seconds, as defined by [12], encountered by a DS3 CSU in the current 15 minute interval."
::= { ds3CurrentEntry 4 }

ds3CurrentUASs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Unavailable Seconds, as defined by [12], encountered by a DS3 CSU in the current 15 minute interval."
::= { ds3CurrentEntry 5 }

ds3CurrentCSSs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Controlled Slip Seconds, as defined by [12], encountered by a DS3 CSU in the current 15 minute interval.

Note that SYNTRAN interfaces are the only interfaces that support the Controlled Slip Seconds managed object. Accordingly, agents configured with non-SYNTRAN interfaces may treat this object as having an ACCESS clause value of not-accessible."

::= { ds3CurrentEntry 6 }

ds3CurrentBPVs OBJECT TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The counter associated with the number of Bipolar Violations, as defined by [12], encountered by a DS3 CSU in the current 15 minute interval."
::= { ds3CurrentEntry 7 }

ds3CurrentCVs OBJECT TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The counter associated with the number of Coding Violations, as defined by [12], encountered by a DS3 CSU in the current 15 minute interval."
::= { ds3CurrentEntry 8 }

-- the DS3 Total group

-- Implementation of this group is mandatory for all systems
-- that attach to a DS3.

-- The DS3 Total Table contains the cumulative sum of the
-- various statistics for the 24 hour interval preceding the
-- first valid interval in the DS3CurrentTable.

ds3TotalTable OBJECT TYPE
SYNTAX SEQUENCE OF DS3TotalEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The DS3 Total table. 24 hour interval."

::= {ds3 4}

ds3TotalEntry OBJECT-TYPE
SYNTAX DS3TotalEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
 "An entry in the DS3 Total table."
INDEX {ds3TotalIndex}
 ::= {ds3TotalTable 1}

DS3TotalEntry ::= SEQUENCE {
 ds3TotalIndex
 INTEGER,
 ds3TotalESs
 Counter,
 ds3TotalSESs
 Counter,
 ds3TotalSEFSs
 Counter,
 ds3TotalUASs
 Counter,
 ds3TotalCSSs
 Counter,
 ds3TotalBPVs
 Counter,
 ds3TotalCVs
 Counter
}

ds3TotalIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The index value which uniquely identifies the CSU to
which this entry is applicable. The interface
identified by a particular value of this index is the
same interface as identified by the same value
an DS3CSUIndex object instance."
 ::= {ds3TotalEntry 1}

ds3TotalESs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of Errored
Seconds, as defined by [12], encountered by a DS3
CSU in the previous 24 hour interval."
::= { ds3TotalEntry 2 }

ds3TotalSEFs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Severely Errored Seconds, as defined by [12],
encountered by a DS3 CSU in the previous 24 hour
interval."
::= { ds3TotalEntry 3 }

ds3TotalUASs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Unavailable Seconds, as defined by [12],
encountered by a DS3 CSU in the previous 24 hour
interval."
::= { ds3TotalEntry 5 }

ds3TotalCSSs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The counter associated with the number of
Controlled Slip Seconds, as defined by [12],
encountered by a DS3 CSU in the previous 24 hour
interval."
Note that SYNTRAN interfaces are the only interfaces that support the Controlled Slip Seconds managed object. Accordingly, agents configured with non-SYNTRAN interfaces may treat this object as having an ACCESS clause value of not-accessible.

::= { ds3TotalEntry 6 }

\textbf{ds3TotalBPVs OBJECT-TYPE}
- \textbf{SYNTAX} Counter
- \textbf{ACCESS} read-only
- \textbf{STATUS} mandatory
- \textbf{DESCRIPTION}
 "The counter associated with the number of Bipolar Violations, as defined by [12], encountered by a DS3 CSU in the previous 24 hour interval."

::= { ds3TotalEntry 7 }

\textbf{ds3TotalCVs OBJECT-TYPE}
- \textbf{SYNTAX} Counter
- \textbf{ACCESS} read-only
- \textbf{STATUS} mandatory
- \textbf{DESCRIPTION}
 "The counter associated with the number of Coding Violations, as defined by [12], encountered by a DS3 CSU in the previous 24 hour interval."

::= { ds3TotalEntry 8 }

END

6. Acknowledgments

This document was produced by the SNMP and the Transmission MIB Working Groups:

Anne Ambler, Spider
Karl Auerbach, Sun
Fred Baker, ACC
Ken Brinkerhoff
Ron Broersma, NOSC
Jack Brown, US Army
Theodore Brunner, Bellcore
Jeffrey Buffum, HP
Jeffrey D. Case, UTK
Chris Chiptasso, Spartacus
Paul Ciarfella, DEC
Bob Collet
Tracy Cox, Bellcore
James R. Davin, MIT-LCS
Kurt Dobbins, Cabletron
Nadya El-Afandi, Network Systems
Gary Ellis, HP
Fred Engle
Mike Erlinger
Richard Fox, Synoptics
Karen Frisa, CMU
Chris Gunner, DEC
Ken Hibbard, Xylogics
Ole Jacobsen, Interop
Ken Jones
Satish Joshi, Synoptics
Frank Kastenholz, Racal-Interlan
Shimshon Kaufman, Spartacus
Jim Kinder, Fibercom
Alex Koifman, BBN
Christopher Kolb, PSI
Cheryl Krupczak, NCR
Peter Lin, Vitalink
John Lunny, TWG
Carl Malamud
Keith McCloghrie, HLS
Donna McMaster, David Systems
Lynn Monsanto, Sun
Dave Perkins, 3COM
Jim Reinstedler, Ungerman Bass
Anil Rjsinghani, DEC
Kary Robertson
Marshall T. Rose, PSI (chair)
L. Michael Sabo, NCSC
Jon Saperia, DEC
John Seligson
Fei Shu, NEC
Sam Sjogren, TGV
Mark Sleeper, Sparta
Lance Sprung
Mike St.Johns
Bob Stewart, Xyplex
Emil Sturniold
Kaj Tesink, Bellcore
Dean Throop, Data General
Bill Townsend, Xylogics
Maurice Turcotte
Kannan Varadhou
Sudhanshu Verma, HP
7. References

8. Security Considerations

Security issues are not discussed in this memo.

9. Authors’ Addresses

Tracy A. Cox
Bell Communications Research
331 Newman Springs Road
P.O. Box 7020
Red Bank, NJ 07701-7020

Phone: (908) 758-2107
EMail: tacox@sabre.bellcore.com

Kaj Tesink
Bell Communications Research
331 Newman Springs Road
P.O. Box 7020
Red Bank, NJ 07701-7020

Phone: (908) 758-5254
EMail: kaj@nvuxr.cc.bellcore.com