enumservice registration for Session Initiation Protocol (SIP)
Addresses-of-Record

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

This document registers an Electronic Number (ENUM) service for the Session Initiation Protocol (SIP), pursuant to the guidelines in RFC 3761. Specifically, this document focuses on provisioning SIP addresses-of-record in ENUM.

Table of Contents

1. Introduction......................... 2
2. ENUM Service Registration............. 2
3. Addresses-of-record in SIP............ 3
4. The ’E2U+SIP’ enumservice........... 5
5. Example of E2U+SIP enumservice........ 5
6. Security Considerations.............. 6
7. IANA Considerations................. 6
8. References......................... 6
 8.1. Normative References............. 6
 8.2. Informative References........... 7
9. Acknowledgements.................... 7
10. Author’s Address...................... 7
11. Full Copyright Statement............. 8
1. Introduction

ENUM (E.164 Number Mapping, RFC 2916 [6]) is a system that uses DNS (Domain Name Service, STD 13, RFC 1034 [3]) to translate telephone numbers, like '+12025332600', into URIs (Uniform Resource Identifiers, RFC 2396 [4]), like 'sip:egar@example.com'. ENUM exists primarily to facilitate the interconnection of systems that rely on telephone numbers with those that use URIs to route transactions. This document applies to the revised version of ENUM described in RFC 3761.

SIP (Session Initiation Protocol, RFC 3261 [2]) is a text-based application protocol that allows endpoints on the Internet to discover one another in order to exchange context information about a session they would like to share. Common forms of communication that are set up by SIP include Internet telephony, instant messaging, video, Internet gaming and other forms of real-time communications. SIP is a multi-service protocol capable of initiating sessions involving different forms of real-time communications simultaneously. SIP is a protocol that finds the best way for parties to communicate.

2. ENUM Service Registration

As defined in [1], the following is a template covering information needed for the registration of the enumservice specified in this document.

- Enumservice Name: "E2U+SIP"
- Type(s): "SIP"
- Subtype(s): N/A
- URI Scheme(s): "sip:", "sips:
- Functional Specification: see Section 4
- Security considerations: see Section 6
- Intended usage: COMMON
- Author: Jon Peterson (jon.peterson@neustar.biz)
- Any other information that the author deems interesting: See Section 3
3. Addresses-of-record in SIP

This document specifies an enumservice field that is appropriate for SIP addresses-of-record URIs. Various other types of URIs can be present in SIP requests. A URI that is associated with a particular SIP user agent (for example, a SIP phone) is commonly known as a SIP contact address.

The difference between a contact address and an address-of-record is like the difference between a device and its user. While there is no formal distinction in the syntax of these two forms of addresses, contact addresses are associated with a particular device, and may have a very device-specific form (like sip:10.0.0.1, or sip:edgar@ua21.example.com). An address-of-record, however, represents an identity of the user, generally a long-term identity, and it does not have a dependency on any device; users can move between devices or even be associated with multiple devices at one time while retaining the same address-of-record. A simple URI, generally of the form ‘sip:edgar@example.com’, is used for an address-of-record.

When a SIP request is created by a user agent, it populates the address-of-record of its target in its To header field and (generally) Request-URI. The address-of-record of the user that is sending the request populates the From header field of the message; the contact address of the device from which the request is sent is listed in the Contact header field.

By sending a registration to a registrar on behalf of its user, a SIP device (i.e., a user agent) can temporarily associate its own contact address with the user’s address-of-record. In so doing, the device becomes eligible to receive requests that are sent to the address-of-record. Upon receiving the registration request, the registrar modifies the provisioning data in a SIP location service to create a mapping between the address-of-record for the user and the device where the user can currently be reached. When future requests arrive at the administrative domain of this location service for the user in question, proxy servers ask the location service where to find the user, and will in turn discover the registered contact address(es). A SIP-based follow-me telephony service, for example, would rely on this real-time availability data in order to find the best place to reach the end user without having to cycle through numerous devices from which the user is not currently registered. Note that addresses-of-record can be registered with other addresses-of-record; for example, while at home, a user might elect to register the address-of-record they use as their personal identity under their
work address-of-record in order to direct requests for their work identity to whatever devices they might have associated with their home address-of-record.

When a SIP entity (be it a user agent or proxy server) needs to make a forwarding decision for a Request-URI containing an address-of-record, it uses the mechanisms described in the SIP specification (RFC 3263) to locate the proper resource in the network. Ordinarily, this entails resolving the domain portion of the URI (example.com in the example above) in order to route the call to a proxy server that is responsible for that domain.

SIP user agents have specific communications capabilities (such as the ability to initiate voice communications with particular codecs, or support for particular SIP protocol extensions). Because an address-of-record does not represent any particular device or set of devices, an address-of-record does not have capabilities as such. When a SIP user agent sends a request to an address-of-record, it begins a phase of capability negotiation that will eventually discover the best way for the originator to communicate with the target. The originating user agent first expresses capabilities of its own in the request it sends (and preferences for the type of session it would like to initiate). The expression of these capabilities may entail the usage of SDP [8] to list acceptable types of media supported and favored by the client, the inclusion of Required/Supported headers to negotiate compatibility of extensions, and possibly the usage of optional SIP extensions, for example using callee capabilities [7] to communicate request handling dispositions. Proxy servers or endpoints subsequently return responses that allow a rich bidirectional capability negotiation process.

The process by which SIP endpoints negotiate capabilities can overlap with the primary service provided by NAPTR records: permitting the originating client to select a particular URI for communications based on an ordered list of enumservices. However, ENUM’s capability management mechanism is decidedly one-way - the administrator of the telephone number expresses capabilities (in the form of protocol names) and preferences that the client must evaluate without negotiation. Moreover, listing available protocols is not comparable to agreement on session media (down to the codec/interval level) and protocol extension support - it would be difficult to express, in the level of detail necessary to arrange a desired session, the capabilities of a SIP device within a NAPTR service field.

Proxying contact addresses in ENUM rather than addresses-of-record would compromise the SIP capability negotiation and discovery process. Much of the benefit of using a URI comes from the fact that
it represents a logical service associated with a user, rather than a
device - indeed, if ENUM wished to target particular devices,
‘E2IPv4’ would be a more appropriate resolution service to define
than ‘E2U’.

SIP addresses-of-record may use the SIP URI scheme or the SIPS URI
scheme. The SIPS URI scheme, when used in an address-of-record,
indicates that the user it represents can only be reached over a
secure connection (using TLS).

4. The ‘E2U+SIP’ enumservice

Traditionally, the services field of a NAPTR record (as defined in
[5]) contains a string that is composed of two subfields: a
‘protocol’ subfield and a ‘resolution service’ subfield. ENUM in
particular defines an ‘E2U’ (E.164 to URI) resolution service. This
document defines an ‘E2U+SIP’ enumservice for SIP.

The scheme of the URI that will appear in the regexp field of a NAPTR
record using the ‘E2U+SIP’ enumservice may either be ‘SIP’ or ‘SIPS’.
This enumservice is best suited to SIP addresses-of-record.

When a SIP address-of-record appears in the regexp field of a NAPTR
record, there is no need to further qualify the enumservice field
with any capability data, since addresses-of-record do not have
capabilities.

There is also generally no need to have more than one NAPTR record
under a single telephone number that points to a SIP address-of-
record.

Note that the user portion of a SIP URI may contain a telephone
number (e.g., ‘sip:+1442079460148@example.com’). Clients should be
careful to avoid infinite loops when recursively performing ENUM
queries on URIs that result from an ENUM lookup.

5. Example of E2U+SIP enumservice

The following is an example of the use of the enumservice registered
by this document in a NAPTR resource record.

$ORIGIN 8.4.1.0.6.4.9.7.0.2.4.4.e164.arpa.
IN NAPTR 10 100 "u" "E2U+ SIP" "^!*.*$!sip:edgar@example.com!".
6. Security Considerations

A SIP address-of-record is a canonical address by which a user is known — placing this address in ENUM is comparable to placing an email address or a similar URI in the DNS.

DNS does not make policy decisions about the records that it shares with an inquirer. All DNS records must be assumed to be available to all inquirers at all times. The information provided within an ENUM record set must therefore be considered to be open to the public — which is a cause for some privacy considerations.

Unlike a traditional telephone number, the resource identified by a SIP URI may require that callers provide cryptographic credentials for authentication and authorization before a user is alerted. In this respect, ENUM in concert with SIP can actually provide far greater protection from unwanted callers than the existing PSTN, despite the public availability of ENUM records. An analysis of threats specific to the dependence of ENUM on the DNS, and the applicability of DNSSEC [9] to these, is provided in [1].

7. IANA Considerations

This document registers the ‘E2U+SIP’ enumservice under the enumservice registry described in the IANA considerations in RFC 3761. Details of the registration are given in Section 2.

8. References

8.1. Normative References

8.2. Informative References

9. Acknowledgements

Thanks to Richard Shockey for comments on the initial draft of this document, and to Allison Mankin for valuable review comments.

10. Author’s Address

Jon Peterson
NeuStar, Inc.
1800 Sutter St
Suite 570
Concord, CA 94520
USA

Phone: +1 925/363-8720
EMail: jon.peterson@neustar.biz
URI: http://www.neustar.biz/
11. Full Copyright Statement

Copyright (C) The Internet Society (2004). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

 Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.