Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it defines managed objects for Address Family Transition Routers (AFTRs) of Dual-Stack Lite (DS-Lite).

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7870.

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1. Introduction

Dual-Stack Lite [RFC6333] is a solution that offers both IPv4 and IPv6 connectivity to customers crossing an IPv6-only infrastructure. One of its key components is an IPv4-over-IPv6 tunnel, which is used to provide IPv4 connectivity across a service provider’s IPv6 network. Another key component is a carrier-grade IPv4-IPv4 Network Address Translation (NAT) to share service provider IPv4 addresses among customers.

This document defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. This MIB module may be used for configuration and monitoring of Address Family Transition Routers (AFTRs) in a Dual-Stack Lite scenario.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [RFC2119]. When these words are not in ALL CAPS (such as "should" or "Should"), they have their usual English meanings and are not to be interpreted as [RFC2119] key words.
3. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579], and STD 58, RFC 2580 [RFC2580].

4. Relationship to the IF-MIB

The Interfaces MIB [RFC2863] defines generic managed objects for managing interfaces. Each logical interface (physical or virtual) has an ifEntry. Tunnels are handled by creating a logical interface (ifEntry) for each tunnel. Each DS-Lite tunnel endpoint also acts as a virtual interface that has a corresponding entry in the IP Tunnel MIB and Interface MIB. Those corresponding entries are indexed by ifIndex.

The ifOperStatus in ifTable is used to represent whether the DS-Lite tunnel function has been triggered. The ifInUcastPkts defined in ifTable will represent the number of IPv4 packets that have been encapsulated into IPv6 packets sent to a Basic Bridging BroadBand (B4). The ifOutUcastPkts defined in ifTable contains the number of IPv6 packets that can be decapsulated to IPv4 in the virtual interface. Also, the IF-MIB defines ifMtu for the MTU of this tunnel interface, so the DS-Lite MIB does not need to define the MTU for the tunnel.

5. Difference from the IP Tunnel MIB and NATV2-MIB

The key technologies for DS-Lite are IP-in-IP (IPv4-in-IPv6) tunnels and NAT (IPv4-to-IPv4 translation).

Notes: According to Section 5.2 of [RFC6333], DS-Lite only defines IPv4 in IPv6 tunnels at this moment, but other types of encapsulation could be defined in the future. So, the DS-Lite MIB only supports IP-in-IP encapsulation. If another RFC defines other tunnel types in the future, the DS-Lite MIB will be updated then.
The NATV2-MIB [RFC7659] is designed to carry translation from any address family to any address family; therefore, it supports IPv4-to-IPv4 translation.

The IP Tunnel MIB [RFC4087] is designed to manage tunnels of any type over IPv4 and IPv6 networks; therefore, it already supports IP-in-IP tunnels. But in a DS-Lite scenario, the tunnel type is point-to-multipoint IP-in-IP tunnels. The direct(2) defined in the IP Tunnel MIB only supports point-to-point tunnels. So, it needs to define a new tunnel type for DS-Lite.

However, the NATV2-MIB and IP Tunnel MIB together are not sufficient to support DS-Lite. This document describes the specific features for the DS-Lite MIB, as below.

In the DS-Lite scenario, the Address Family Transition Router (AFTR) is not only the tunnel-end concentrator, but also an IPv4-to-IPv4 NAT. So, as defined in [RFC6333], when the IPv4 packets come back from the Internet to the AFTR, it knows how to reconstruct the IPv6 encapsulation by doing a reverse lookup in the extended IPv4 NAT binding table (Section 6.6 of [RFC6333]). The NAT binding table in the AFTR is extended to include the IPv6 address of the tunnel initiator. However, the NAT binding information defined in the NATV2-MIB as natv2PortMapTable is indexed by the NAT instance, protocol, and external realm and address. Because the tunnelIfTable defined in the TUNNEL-MIB [RFC4087] is indexed by the ifIndex, the DS-Lite MIB needs to define the tunnel objects to extend the NAT binding entry by interface. Therefore, a combined MIB is necessary.

An implementation of the IP Tunnel MIB is required for DS-Lite. As the tunnel is not point-to-point in DS-Lite, it needs to define a new tunnel type for DS-Lite. The tunnelIfEncapsMethod in the tunnelIfEntry should be set to dsLite(17), and a corresponding entry in the DS-Lite module will exist for every tunnelIfEntry with this tunnelIfEncapsMethod. The tunnelIfRemoteInetAddress must be set to "::".

6. Structure of the MIB Module

The DS-Lite MIB provides a way to monitor and manage the devices (AFTRs) in a DS-Lite scenario through SNMP.

The DS-Lite MIB is configurable on a per-interface basis. It depends on several parts of the IF-MIB [RFC2863], IP Tunnel MIB [RFC4087], and NATV2-MIB [RFC7659].
6.1. The Object Group

This group defines objects that are needed for the DS-Lite MIB.

6.1.1. The dsliteTunnel Subtree

The dsliteTunnel subtree describes managed objects used for managing tunnels in the DS-Lite scenario. Because the tunnelInetConfigLocalAddress and the tunnelInetConfigRemoteAddress defined in the IP Tunnel MIB are not readable, a few new objects are defined in the DS-Lite MIB.

6.1.2. The dsliteNAT Subtree

The dsliteNAT subtree describes managed objects used for configuration and monitoring of an AFTR that is capable of a NAT function. Because the NATV2-MIB supports the NAT management function in DS-Lite, we may reuse it in the DS-Lite MIB. The dsliteNAT subtree also provides the mapping information between the tunnel entry (dsliteTunnelEntry) and the NAT entry (dsliteNATBindEntry) by adding the IPv6 address of the B4 to the natv2PortMapEntry in the NATV2-MIB. The mapping behavior, filtering behavior, and pooling behavior described in this subtree are all defined in [RFC4787].

6.1.3. The dsliteInfo Subtree

The dsliteInfo subtree provides statistical information for DS-Lite.

6.2. The Notification Group

This group defines some notification objects for a DS-Lite scenario.

6.3. The Conformance Group

The dsliteConformance subtree provides conformance information of MIB objects.

7. MIB Modules Required for IMPORTS

This MIB module IMPORTs objects from [RFC2578], [RFC2580], [RFC2863], [RFC3411], [RFC4001], and [RFC7659].
8. Definitions

DSLite-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, mib-2,
 NOTIFICATION-TYPE, Integer32,
 Counter64, Unsigned32
 FROM SNMPv2-SMI

OBJECT-GROUP, MODULE-COMPLIANCE,
 NOTIFICATION-GROUP
 FROM SNMPv2-CONF

SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB

ifIndex
 FROM IF-MIB

InetAddress, InetAddressType, InetAddressPrefixLength,
 InetPortNumber
 FROM INET-ADDRESS-MIB

ProtocolNumber, Natv2InstanceIndex, Natv2SubscriberIndex
 FROM NATV2-MIB;

dsliteMIB MODULE-IDENTITY
LAST-UPDATED "201605110000Z" -- May 11, 2016
ORGANIZATION "IETF Softwire Working Group"
CONTACT-INFO
 "Yu Fu
 CNNIC
 No.4 South 4th Street, Zhongguancun
 Hai-Dian District, Beijing 100090
 China
 Email: fuyu@cnnic.cn

 Sheng Jiang
 Huawei Technologies Co., Ltd
 Huawei Building, 156 Beiqing Rd.
 Hai-Dian District, Beijing 100095
 China
 Email: jiangsheng@huawei.com
DESCRIPTION
"The MIB module is defined for management of objects in the
DS-Lite scenario.

Copyright (c) 2016 IETF Trust and the persons identified as
authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust’s Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info)."

REVISION "201605110000Z"
DESCRIPTION
"Initial version. Published as RFC 7870."

::= { mib-2 240 }

--Top-level components of this MIB module

dsliteMIBObjects OBJECT IDENTIFIER
 ::= { dsliteMIB 1 }
dsliteTunnel OBJECT IDENTIFIER
 ::= { dsliteMIBObjects 1 }
dsliteNAT OBJECT IDENTIFIER
 ::= { dsliteMIBObjects 2 }
dsliteInfo OBJECT IDENTIFIER
 ::= { dsliteMIBObjects 3 }

--Notifications section
dsletteNotifications OBJECT IDENTIFIER ::= { dsletteMIB 0 }

--dsletteTunnel

--dsletteTunnelTable

dsletteTunnelTable OBJECT-TYPE
SYNTAX SEQUENCE OF DsletteTunnelEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The (conceptual) table containing information on configured tunnels. This table can be used to map a B4 address to the associated AFTR address. It can also be used for row creation."
REFERENCE "B4, AFTR: RFC 6333."
 ::= { dsletteTunnelTable 1 }

DsletteTunnelEntry OBJECT-TYPE
SYNTAX DsletteTunnelEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Each entry in this table contains the information on a particular configured tunnel."
INDEX { dsletteTunnelAddressType, dsletteTunnelStartAddress, dsletteTunnelEndAddress, ifIndex }
 ::= { dsletteTunnelTable 1 }

DsletteTunnelEntry ::= SEQUENCE {
 dsletteTunnelAddressType InetAddressType,
 dsletteTunnelStartAddress InetAddress,
 dsletteTunnelEndAddress InetAddress,
 dsletteTunnelStartAddrPreLen InetAddressPrefixLength
}

dsletteTunnelAddressType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This object MUST be set to the value of ipv6(2)."
It describes the address type of the IPv4-in-IPv6 tunnel initiator and endpoint.

REFERENCE
"ipv6(2): RFC 4001."
 ::= { dsliteTunnelEntry 1 }

dsliteTunnelStartAddress OBJECT-TYPE
SYNTAX InetAddress (SIZE (0..16))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The IPv6 address of the initiator of the tunnel.
The address type is given by dsliteTunnelAddressType."
 ::= { dsliteTunnelEntry 2 }

dsliteTunnelEndAddress OBJECT-TYPE
SYNTAX InetAddress (SIZE (0..16))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The IPv6 address of the endpoint of the tunnel.
The address type is given by dsliteTunnelAddressType."
 ::= { dsliteTunnelEntry 3 }

dsliteTunnelStartAddPreLen OBJECT-TYPE
SYNTAX InetAddressPrefixLength
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The IPv6 prefix length of the IP address for the
initiator of the tunnel(dsliteTunnelStartAddress)."
 ::= { dsliteTunnelEntry 4 }

--dsliteNATBindTable(according to the NAPT scheme)

dsliteNATBindTable OBJECT-TYPE
SYNTAX SEQUENCE OF DsliteNATBindEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table contains information about currently
active NAT binds in the NAT of the AFTR. This table
adds the IPv6 address of a B4 to the natv2PortMapTable
defined in NATV2-MIB (RFC 7659)."
REFERENCE
"NATV2-MIB: Section 4 of RFC 7659."
 ::= { dsliteNAT 1 }
ds-liteNATBindEntry OBJECT-TYPE
SYNTAX DsliteNATBindEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The entry in this table holds the mapping relationship between tunnel information and NAT bind information. Each entry in this table not only needs to match a corresponding entry in the natv2PortMapTable, but also a corresponding entry in the ds-liteTunnelTable. So, the INDEX of the entry needs to match a corresponding value in the natv2PortMapTable INDEX and a corresponding value in the ds-liteTunnelTable INDEX. These entries are lost upon agent restart."
REFERENCE
"natv2PortMapTable: Section 4 of RFC 7659."
INDEX { ds-liteNATBindMappingInstanceIndex,
 ds-liteNATBindMappingProto,
 ds-liteNATBindMappingExtRealm,
 ds-liteNATBindMappingExtAddressType,
 ds-liteNATBindMappingExtAddress,
 ds-liteNATBindMappingExtPort,
 ifIndex,
 ds-liteTunnelStartAddress }::= { ds-liteNATBindTable 1 }
DsliteNATBindEntry ::= SEQUENCE {
 ds-liteNATBindMappingInstanceIndex Natv2InstanceIndex,
 ds-liteNATBindMappingProto ProtocolNumber,
 ds-liteNATBindMappingExtRealm SnmpAdminString,
 ds-liteNATBindMappingExtAddressType InetAddressType,
 ds-liteNATBindMappingExtAddress InetAddress,
 ds-liteNATBindMappingExtPort InetPortNumber,
 ds-liteNATBindMappingIntRealm SnmpAdminString,
 ds-liteNATBindMappingIntAddressType InetAddressType,
 ds-liteNATBindMappingIntAddress InetAddress,
 ds-liteNATBindMappingIntPort InetPortNumber,
 ds-liteNATBindMappingPool Unsigned32,
 ds-liteNATBindMappingMapBehavior INTEGER,
 ds-liteNATBindMappingFilterBehavior INTEGER,
 ds-liteNATBindMappingAddressPooling INTEGER
}
dsl-liteNATBindMappingInstanceIndex OBJECT-TYPE
SYNTAX Natv2InstanceIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Index of the NAT instance that created this port map entry."
::= { dsliteNATBindEntry 1 }

dsliteNATBindMappingProto OBJECT-TYPE
SYNTAX ProtocolNumber
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This object specifies the mapping’s transport protocol number."
::= { dsliteNATBindEntry 2 }

dsliteNATBindMappingExtRealm OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(0..32))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The realm to which dsliteNATBindMappingExtAddress belongs."
::= { dsliteNATBindEntry 3 }

dsliteNATBindMappingExtAddressType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Address type for the mapping’s external address. This object MUST be set to the value of IPv4(1). The values of ipv6(2), ipv4z(3), and ipv6z(4) are not allowed."
REFERENCE
"ipv4(1), ipv6(2), ipv4z(3), and ipv6z(4): RFC 4001."
::= { dsliteNATBindEntry 4 }

dsliteNATBindMappingExtAddress OBJECT-TYPE
SYNTAX InetAddress (SIZE (0..4))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The mapping’s external address. This is the source address for translated outgoing packets. The address type is given by dsliteNATBindMappingExtAddressType."
::= { dsliteNATBindEntry 5 }

dsliteNATBindMappingExtPort OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The mapping’s assigned external port number. This is the source port for translated outgoing packets. This MUST be a non-zero value."
::= { dsliteNATBindEntry 6 }

dsliteNATBindMappingIntRealm OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(0..32))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The realm to which natMappingIntAddress belongs. This realm defines the IPv6 address space from which the tunnel source address is taken. The realm of the encapsulated IPv4 address is restricted in scope to the tunnel, so there is no point in identifying it separately."
::= { dsliteNATBindEntry 7 }

dsliteNATBindMappingIntAddressType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Address type of the mapping’s internal address. This object MUST be set to the value of iPv4z(3). The values of ipv4(1), ipv6(2), and ipv6z(4) are not allowed."
REFERENCE
"ipv4(1), ipv6(2), iPv4z(3), and ipv6z(4): RFC 4001."
::= { dsliteNATBindEntry 8 }

dsliteNATBindMappingIntAddress OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The mapping’s internal address. It is the IPv6 tunnel source address. The address type is given by dsliteNATBindMappingIntAddressType."
::= { dsliteNATBindEntry 9 }

dsliteNATBindMappingIntPort OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The mapping’s internal port number. This MUST be a
non-zero value."
::= { dsliteNATBindEntry 10 }

dsliteNATBindMappingPool OBJECT-TYPE
SYNTAX Unsigned32 (0|1..4294967295)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Index of the pool that contains this mapping’s external
address and port. If zero, no pool is associated with
this mapping."
::= { dsliteNATBindEntry 11 }

dsliteNATBindMappingMapBehavior OBJECT-TYPE
SYNTAX INTEGER{
endpointIndependent (0),
addressDependent(1),
addressAndPortDependent (2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Mapping behavior as described in Section 4.1 of RFC 4787.

endpointIndependent(0), the behavior REQUIRED by
RFC 4787, REQ-1 maps the source address and port to
the same external address and port for all destination
address and port combinations reached through the same
external realm and using the given protocol.

addressDependent(1) maps to the same external address
and port for all destination ports at the same
destination address reached through the same external
realm and using the given protocol.

addressAndPortDependent(2) maps to a separate external
address and port combination for each different
destination address and port combination reached
through the same external realm.

For the DS-Lite scenario, it must be
addressAndPortDependent(2)."
REFERENCE
"Mapping behavior: Section 4.1 of RFC 4787.
DS-Lite: RFC 6333."
::= { dsliteNATBindEntry 12 }
ds-liteNATBindMappingFilterBehavior OBJECT-TYPE
 SYNTAX INTEGER{
 endpointIndependent (0),
 addressDependent (1),
 addressAndPortDependent (2)
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Filtering behavior as described in Section 5 of RFC 4787.
 endpointIndependent(0) accepts for translation packets
 from all combinations of remote address and port
destined to the mapped external address and port via
the given external realm and using the given protocol.

addressDependent(1) accepts for translation packets from
all remote ports from the same remote source address
destined to the mapped external address and port via the
given external realm and using the given protocol.

addressAndPortDependent(2) accepts for translation only
those packets with the same remote source address, port,
and protocol incoming from the same external realm as
identified when the applicable port map entry was
created.

RFC 4787, REQ-8 recommends either endpointIndependent(0)
or addressDependent(1) filtering behavior, depending on
whether application friendliness or security takes
priority.

For the DS-Lite scenario, it must be
addressAndPortDependent(2)."

REFERENCE
 "Filtering behavior: Section 5 of RFC 4787.
 DS-Lite: RFC 6333."
::= { dsliteNATBindEntry 13 }
DESCRIPTION
"Type of address pooling behavior that was used to create this mapping.

arbitrary(0) pooling behavior means that the NAT instance may create the new port mapping using any address in the pool that has a free port for the protocol concerned.

paired(1) pooling behavior, the behavior RECOMMENDED by RFC 4787, REQ-2 means that once a given internal address has been mapped to a particular address in a particular pool, further mappings of the same internal address to that pool will reuse the previously assigned pool member address."

REFERENCE
"Pooling behavior: Section 4.1 of RFC 4787."
::= { dsliteNATBindEntry 14 }

--dsliteInfo

dsliteAFTRAAlarmScalar OBJECT IDENTIFIER ::= { dsliteInfo 1 }

dsliteAFTRAAlarmB4AddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS accessible-for-notify
STATUS current
DESCRIPTION
 "This object indicates the address type of the B4, which will send an alarm."
 ::= { dsliteAFTRAAlarmScalar 1 }

dsliteAFTRAAlarmB4Addr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS accessible-for-notify
STATUS current
DESCRIPTION
 "This object indicates the IP address of B4, which will send an alarm. The address type is given by dsliteAFTRAAlarmB4AddrType."
 ::= { dsliteAFTRAAlarmScalar 2 }

dsliteAFTRAAlarmProtocolType OBJECT-TYPE
SYNTAX INTEGER {
 tcp (0),
 udp (1),
 icmp (2),
 total (3)
}
MAX-ACCESS accessible-for-notify
STATUS current
DESCRIPTION
"This object indicates the transport protocol type of alarm.

tcp (0) means that the transport protocol type of alarm is tcp.

udp (1) means that the transport protocol type of alarm is udp.

icmp (2) means that the transport protocol type of alarm is icmp.

total (3) means that the transport protocol type of alarm is total."
::= { dsliteAFTRAlarmScalar 3 }

dsliteAFTRAlarmSpecificIPAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS accessible-for-notify
STATUS current
DESCRIPTION
"This object indicates the address type of the IP address whose port usage has reached the threshold."
::= { dsliteAFTRAlarmScalar 4 }

dsliteAFTRAlarmSpecificIP OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS accessible-for-notify
STATUS current
DESCRIPTION
"This object indicates the IP address whose port usage has reached the threshold. The address type is given by dsliteAFTRAlarmSpecificIPAddrType."
::= { dsliteAFTRAlarmScalar 5 }

dsliteAFTRAlarmConnectNumber OBJECT-TYPE
SYNTAX Integer32 (60..90)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object indicates the notification threshold of the DS-Lite tunnels that is active in the AFTR device."
REFERENCE
"AFTR: Section 6 of RFC 6333."
DEFVAL
 { 60 }
::= { dsliteAFTRAAlarmScalar 6 }

dsliteAFTRAAlarmSessionNumber OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "This object indicates the notification threshold of the IPv4 session for the user."
REFERENCE
 "AFTR: Section 6 of RFC 6333
 B4: Section 5 of RFC 6333."
DEFVAL
 { -1 }
::= { dsliteAFTRAAlarmScalar 7 }

dsliteAFTRAAlarmPortNumber OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "This object indicates the notification threshold of the NAT ports that have been used by the user."
DEFVAL
 { -1 }
::= { dsliteAFTRAAlarmScalar 8 }

dsliteStatisticsTable OBJECT-TYPE
SYNTAX SEQUENCE OF DsliteStatisticsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This table provides statistical information about DS-Lite."
::= { dsliteInfo 2 }

dsliteStatisticsEntry OBJECT-TYPE
SYNTAX DsliteStatisticsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Each entry in this table provides statistical information about DS-Lite."
INDEX { dsliteStatisticsSubscriberIndex }
::= { dsliteStatisticsTable 1 }
DsliteStatisticsEntry ::= SEQUENCE {
 dsliteStatisticsSubscriberIndex Natv2SubscriberIndex,
 dsliteStatisticsDiscards Counter64,
 dsliteStatisticsSends Counter64,
 dsliteStatisticsReceives Counter64,
 dsliteStatisticsIpv4Session Counter64,
 dsliteStatisticsIpv6Session Counter64
}

dsliteStatisticsSubscriberIndex OBJECT-TYPE
SYNTAX Natv2SubscriberIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Index of the subscriber or host. A unique value,
greater than zero, for each subscriber in the
managed system."
::= { dsliteStatisticsEntry 1 }

dsliteStatisticsDiscards OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the number of packets
discarded from this subscriber."
::= { dsliteStatisticsEntry 2 }

dsliteStatisticsSends OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the number of packets that is
sent to this subscriber."
::= { dsliteStatisticsEntry 3 }

dsliteStatisticsReceives OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the number of packets that is
received from this subscriber."
::= { dsliteStatisticsEntry 4 }
dsliteStatisticsIpv4Session OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the number of the current IPv4 Sessions."
REFERENCE
"Session: Paragraph 2 in Section 11 of RFC 6333. (The AFTR should have the capability to log the tunnel-id, protocol, ports/IP addresses, and the creation time of the NAT binding to uniquely identify the user sessions)."
::= { dsliteStatisticsEntry 5 }

dsliteStatisticsIpv6Session OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the number of the current IPv6 session. Because the AFTR is also a dual-stack device, it will also forward normal IPv6 packets for the inbound and outbound direction."
REFERENCE
"Session: Paragraph 2 in Section 11 of RFC 6333. (The AFTR should have the capability to log the tunnel-id, protocol, ports/IP addresses, and the creation time of the NAT binding to uniquely identify the user sessions)."
::= { dsliteStatisticsEntry 6 }

---dslite Notifications

dsliteTunnelNumAlarm NOTIFICATION-TYPE
OBJECTS { dsliteAFTRAlarmProtocolType,
 dsliteAFTRAlarmB4AddrType,
 dsliteAFTRAlarmB4Addr }
STATUS current
DESCRIPTION
"This trap is triggered when the number of current DS-Lite tunnels exceeds the value of the dsliteAFTRAlarmConnectNumber."
::= { dsliteNotifications 1 }
ds-liteAFTRUserSessionNumAlarm NOTIFICATION-TYPE
OBJECTS { ds-liteAFTRAlarmProtocolType,
 ds-liteAFTRAlarmB4AddrType,
 ds-liteAFTRAlarmB4Addr }
STATUS current
DESCRIPTION
"This trap is triggered when user sessions
reach the threshold. The threshold
is specified by the ds-liteAFTRAlarmSessionNumber."
REFERENCE
"Session: Paragraph 2 in Section 11 of RFC 6333.
(The AFTR should have the capability to log the
tunnel-id, protocol, ports/IP addresses, and
the creation time of the NAT binding to uniquely
identify the user sessions)."
::= { ds-liteNotifications 2 }

dsl-liteAFTRPortUsageOfSpecificIpAlarm NOTIFICATION-TYPE
OBJECTS { ds-liteAFTRAlarmSpecificIPAddrType,
 ds-liteAFTRAlarmSpecificIP }
STATUS current
DESCRIPTION
"This trap is triggered when the used NAT
ports of map address reach the threshold.
The threshold is specified by the
dsl-liteAFTRAlarmPortNumber."
::= { ds-liteNotifications 3 }

--Module Conformance statement

dsl-liteConformance OBJECT IDENTIFIER
::= { ds-liteMIB 2 }

dsl-liteCompliances OBJECT IDENTIFIER ::= { ds-liteConformance 1 }

dsl-liteGroups OBJECT IDENTIFIER ::= { ds-liteConformance 2 }

-- compliance statements

dsl-liteCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"Describes the minimal requirements for conformance
to the DS-Lite MIB."
MODULE -- this module
MANDATORY-GROUPS { ds-liteNATBindGroup,
 ds-liteTunnelGroup,
 ds-liteStatisticsGroup,
dsliteNotificationsGroup,
dsliteAFTRAlarmScalarGroup }
::= { dsliteCompliances 1 }

dsliteNATBindGroup OBJECT-GROUP
OBJECTS {
 dsliteNATBindMappingIntRealm,
 dsliteNATBindMappingIntAddressType,
 dsliteNATBindMappingIntAddress,
 dsliteNATBindMappingIntPort,
 dsliteNATBindMappingPool,
 dsliteNATBindMappingMapBehavior,
 dsliteNATBindMappingFilterBehavior,
 dsliteNATBindMappingAddressPooling }
STATUS current
DESCRIPTION
"A collection of objects to support basic
management of NAT binds in the NAT of the AFTR."
::= { dsliteGroups 1 }

dsliteTunnelGroup OBJECT-GROUP
OBJECTS { dsliteTunnelStartAddPreLen }
STATUS current
DESCRIPTION
"A collection of objects to support management
of DS-Lite tunnels."
::= { dsliteGroups 2 }

dsliteStatisticsGroup OBJECT-GROUP
OBJECTS { dsliteStatisticsDiscards,
 dsliteStatisticsSends,
 dsliteStatisticsReceives,
 dsliteStatisticsIpv4Session,
 dsliteStatisticsIpv6Session }
STATUS current
DESCRIPTION
"A collection of objects to support management
of statistical information for AFTR devices."
::= { dsliteGroups 3 }

dsliteNotificationsGroup NOTIFICATION-GROUP
NOTIFICATIONS { dsliteTunnelNumAlarm,
 dsliteAFTRUserSessionNumAlarm,
 dsliteAFTRPortUsageOfSpecificIpAlarm }
STATUS current
DESCRIPTION
"A collection of objects to support management
of trap information for AFTR devices."
::= { dsliteGroups 4 }

dsliteAFTRAAlarmScalarGroup OBJECT-GROUP
OBJECTS { dsliteAFTRAAlarmB4AddrType,
 dsliteAFTRAAlarmB4Addr,
 dsliteAFTRAAlarmProtocolType,
 dsliteAFTRAAlarmSpecificIPAddrType,
 dsliteAFTRAAlarmSpecificIP,
 dsliteAFTRAAlarmConnectNumber,
 dsliteAFTRAAlarmSessionNumber,
 dsliteAFTRAAlarmPortNumber}
STATUS current
DESCRIPTION
"A collection of objects to support management of
the information about the AFTR alarming scalar."
::= { dsliteGroups 5 }
END

9. Security Considerations

There are a number of management objects defined in this MIB module
with a MAX-ACCESS clause of read-write and/or read-create. Such
objects may be considered sensitive or vulnerable in some network
environments. The support for SET operations in a non-secure
environment without proper protection opens devices to attack. These
are the tables and objects and their sensitivity/vulnerability:

dsliteAFTRAAlarmConnectNumber

dsliteAFTRAAlarmSessionNumber

dsliteAFTRAAlarmPortNumber

Notification thresholds: An attacker setting an arbitrarily low
threshold can cause many useless notifications to be generated.
Setting an arbitrarily high threshold can effectively disable
notifications, which could be used to hide another attack.

Some of the readable objects in this MIB module (i.e., objects with a
MAX-ACCESS other than not-accessible) may be considered sensitive or
vulnerable in some network environments. It is thus important to
control even GET and/or NOTIFY access to these objects and possibly
to even encrypt the values of these objects when sending them over
the network via SNMP. These are the tables and objects and their
sensitivity/vulnerability:
Objects that reveal host identities: Various objects can reveal the identity of private hosts that are engaged in a session with external end nodes. A curious outsider could monitor these to assess the number of private hosts being supported by the AFTR device. Further, a disgruntled former employee of an enterprise could use the information to break into specific private hosts by intercepting the existing sessions or originating new sessions into the host. If nothing else, unauthorized monitoring of these objects will violate individual subscribers’ privacy.

Unauthorized read access to the dsliteTunnelTable would reveal information about the tunnel topology.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPsec), there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

Implementations SHOULD provide the security features described by the SNMPv3 framework (see [RFC3410]), and implementations claiming compliance to the SNMPv3 standard MUST include full support for authentication and privacy via the User-based Security Model (USM) [RFC3414] with the AES cipher algorithm [RFC3826]. Implementations MAY also provide support for the Transport Security Model (TSM) [RFC5591] in combination with a secure transport such as SSH [RFC5592] or TLS/DTLS [RFC6353].

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.
10. IANA Considerations

IANA has allocated the following OBJECT IDENTIFIER value and recorded it in the SMI Numbers registry in the subregistry called "SMI Network Management MGMT Codes Internet-standard MIB" under the mib-2 branch (1.3.6.1.2.1):

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>OBJECT IDENTIFIER value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSLite-MIB</td>
<td>{ mib-2 240 }</td>
</tr>
</tbody>
</table>

IANA has recorded the following IANA_tunnelType Textual Convention within the IANAifType-MIB:

```
IANA_tunnelType ::= TEXTUAL-CONVENTION
SYNTAX INTEGER {
    dsLite(17) -- DS-Lite tunnel
}
```

11. References

11.1. Normative References

11.2. Informative References

Acknowledgements

The authors would like to thank the following for their valuable comments: Suresh Krishnan, Ian Farrer, Yiu Lee, Qi Sun, Yong Cui, David Harrington, Dave Thaler, Tassos Chatzithomaoglou, Tom Taylor, Hui Deng, Carlos Pignataro, Matt Miller, Terry Manderson, and other members of the Softwire working group.

Authors’ Addresses

Yu Fu
CNNIC
No.4 South 4th Street, Zhongguancun
Hai-Dian District, Beijing 100190
China

Email: fuyu@cnnic.cn

Sheng Jiang
Huawei Technologies Co., Ltd
Q14, Huawei Campus, No.156 Beiqing Road
Hai-Dian District, Beijing 100095
China

Email: jiangsheng@huawei.com

Jiang Dong
Tsinghua University
Department of Computer Science, Tsinghua University
Beijing 100084
China

Email: knight.dongjiang@gmail.com

Yuchi Chen
Tsinghua University
Department of Computer Science, Tsinghua University
Beijing 100084
China

Email: flashfoxmx@gmail.com