BGPsec Algorithms, Key Formats, and Signature Formats

Abstract

This document specifies the algorithms, algorithm parameters, asymmetric key formats, asymmetric key sizes, and signature formats used in BGPsec (Border Gateway Protocol Security). This document updates RFC 7935 ("The Profile for Algorithms and Key Sizes for Use in the Resource Public Key Infrastructure") and obsoletes RFC 8208 ("BGPsec Algorithms, Key Formats, and Signature Formats") by adding Documentation and Experimentation Algorithm IDs, correcting the range of unassigned algorithms IDs to fill the complete range, and restructuring the document for better reading.

This document also includes example BGPsec UPDATE messages as well as the private keys used to generate the messages and the certificates necessary to validate those signatures.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8608.
1. Introduction .. 3
 1.1. Terminology .. 3
 1.2. Changes from RFC 8208 4
2. Algorithms .. 4
 2.1. Algorithm ID Types 4
 2.2. Signature Algorithms 6
 2.2.1. Algorithm ID 0x01 (1) - (ECDSA P-256) 6
3. Asymmetric Key Pair Formats 6
 3.1. Asymmetric Key Pair for Algorithm ID 0x01 (1) - (ECDSA
 P-256) .. 6
 3.1.1. Public Key Format 6
 3.1.2. Private Key Format 7
4. Signature Formats ... 7
5. Additional Requirements 7
6. Security Considerations 7
7. IANA Considerations .. 7
8. References ... 9
 8.1. Normative References 9
 8.2. Informative References 11
Appendix A. Examples ... 12
 A.1. Topology and Experiment Description 12
 A.2. Keys ... 12
 A.3. BGPsec IPv4 ... 16
 A.4. BGPsec IPv6 ... 18
Acknowledgements ... 21
Authors’ Addresses ... 21
1. Introduction

This document specifies the following:

- the digital signature algorithm and parameters,
- the hash algorithm and parameters,
- the algorithm identifier assignment and classification,
- the public and private key formats, and
- the signature formats

used by Resource Public Key Infrastructure (RPKI) Certification Authorities (CAs) and BGPsec (Border Gateway Protocol Security) speakers (i.e., routers). CAs use these algorithms when processing requests for BGPsec Router Certificates [RFC8209]. Examples of when BGPsec routers use these algorithms include requesting BGPsec certificates [RFC8209], signing BGPsec UPDATE messages [RFC8205], and verifying signatures on BGPsec UPDATE messages [RFC8205].

This document updates [RFC7935] to add support for a) a different algorithm for BGPsec certificate requests, which are issued only by BGPsec speakers; b) a different Subject Public Key Info format for BGPsec certificates, which is needed for the specified BGPsec signature algorithm; and c) different signature formats for BGPsec signatures, which are needed for the specified BGPsec signature algorithm. The BGPsec certificates are differentiated from other RPKI certificates by the use of the BGPsec Extended Key Usage as defined in [RFC8209]. BGPsec uses a different algorithm [RFC6090] [DSS] from the rest of the RPKI to provide similar security with smaller keys, making the certificates smaller; these algorithms also result in smaller signatures, which make the PDUs smaller.

Appendix A (non-normative) contains example BGPsec UPDATE messages as well as the private keys used to generate the messages and the certificates necessary to validate the signatures.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
1.2. Changes from RFC 8208

This section describes the significant changes between [RFC8208] and this document.

- Added Section 2.1 containing Algorithm ID types. Also, the interpretation of these IDs is described.
- Restructured Sections 2 and 3 to align with the corresponding algorithm suite identifier value.
- Corrected the range for unassigned algorithm suite identifier values.
- Added Documentation algorithm suite identifier values.
- Added Experimentation algorithm suite identifier values.
- Changed the next-hop IP in Appendix A’s IPv6 example to use a private usage IPv6 address.

2. Algorithms

The algorithms used to compute signatures on CA certificates, BGPsec Router Certificates, and Certificate Revocation Lists (CRLs) are as specified in Section 2 of [RFC7935]. This section addresses algorithms used by BGPsec [RFC8205] [DSS]. For example, these algorithms are used by BGPsec routers to sign and verify BGPsec UPDATE messages. To identify which algorithm is used, the BGPsec UPDATE message contains the corresponding algorithm ID in each Signature_Block of the BGPsec UPDATE message.

2.1. Algorithm ID Types

Algorithms in BGPsec UPDATE messages are identified by the Algorithm Suite Identifier field (algorithm ID) within the Signature_Block (see Section 3.2 of [RFC8205]).

This document specifies five types of Algorithm IDs:

- Reserved Algorithm ID

Reserved algorithm IDs are the values 0x00 (0) and 0xFF (255). These IDs MUST NOT be used in a Signature_Block, and if encountered, the router MUST treat BGPsec UPDATE messages as malformed [RFC4271].
Signature Algorithm ID

Signature algorithms are defined in Section 2.2 of this document. Processing of BGPsec UPDATE signing and validation using signature algorithms is described at length in Sections 4.2 and 5.2 of [RFC8205].

Unassigned Algorithm ID

This type of Algorithm ID is free for future assignments and MUST NOT be used until an algorithm is officially assigned (see Section 7). In case a router encounters an unassigned algorithm ID in one of the Signature_Blocks of a BGPsec UPDATE message, the router SHOULD process the Signature_Block as an unsupported algorithm as specified in Section 5.2 of [RFC8205].

Experimentation Algorithm ID

Experimentation algorithm IDs span from 0xF7 (247) to 0xFA (250). To allow experimentation to accurately describe deployment examples, the use of publicly assigned algorithm IDs is inappropriate, and a reserved block of Experimentation algorithm IDs is required. This ensures that experimentation does not clash with assigned algorithm IDs in deployed networks and mitigates the risks to operational integrity of the network through inappropriate use of experimentation to perform literal configuration of routing elements on production systems. A router that encounters an algorithm ID of this type outside of an experimental network SHOULD treat it the same as an unsupported algorithm as specified in Section 5.2 of [RFC8205].

Documentation Algorithm ID

Documentation algorithm IDs span from 0xFB (251) to 0xFE (254). To allow documentation to accurately describe deployment examples, the use of publicly assigned algorithm IDs is inappropriate, and a reserved block of Documentation algorithm IDs is required. This ensures that documentation does not clash with assigned algorithm IDs in deployed networks and mitigates the risks to operational integrity of the network through inappropriate use of documentation to perform literal configuration of routing elements on production systems. A router that encounters an algorithm ID of this type SHOULD treat it the same as an unsupported algorithm as specified in Section 5.2 of [RFC8205].
2.2. Signature Algorithms

2.2.1. Algorithm ID 0x01 (1) - (ECDSA P-256)

- The signature algorithm used **MUST** be the Elliptic Curve Digital Signature Algorithm (ECDSA) with curve P-256 [RFC6090] [DSS].
- The hash algorithm used **MUST** be SHA-256 [SHS].

Hash algorithms are not identified by themselves in certificates or BGPsec UPDATE messages. They are represented by an OID that combines the hash algorithm with the digital signature algorithm as follows:

- The ecdsa-with-SHA256 OID [RFC5480] **MUST** appear in the Public-Key Cryptography Standards #10 (PKCS #10) signatureAlgorithm field [RFC2986] or in the Certificate Request Message Format (CRMF) POPOSigningKey algorithm field [RFC4211]; where the OID is placed depends on the certificate request format generated.

- In BGPsec UPDATE messages, the ECDSA with SHA-256 algorithm suite identifier value 0x01 (1) (see Section 7) is included in the Signature_Block List’s Algorithm Suite Identifier field.

3. Asymmetric Key Pair Formats

The key formats used to compute signatures on CA certificates, BGPsec Router Certificates, and CRLs are as specified in Section 3 of [RFC7935]. This section addresses key formats found in the BGPsec Router requests and in BGPsec Router Certificates.

3.1. Asymmetric Key Pair for Algorithm ID 0x01 (1) - (ECDSA P-256)

The ECDSA private keys used to compute signatures for certificate requests and BGPsec UPDATE messages **MUST** be associated with the P-256 elliptic curve domain parameters [RFC5480]. The public key pair **MUST** use the uncompressed form.

3.1.1. Public Key Format

The Subject’s public key is included in subjectPublicKeyInfo [RFC5280]. It has two sub-fields: `algorithm` and `subjectPublicKey`. The values for the structures and their sub-structures follow:

- `algorithm` (an AlgorithmIdentifier type): The id-ecPublicKey OID **MUST** be used in the algorithm field, as specified in Section 2.1.1 of [RFC5480]. The value for the associated parameters **MUST** be secp256r1, as specified in Section 2.1.1.1 of [RFC5480].
subjectPublicKey: ECPoint MUST be used to encode the certificate’s subjectPublicKey field, as specified in Section 2.2 of [RFC5480].

3.1.2. Private Key Format

Local policy determines private key format.

4. Signature Formats

The structure for the certificate’s and CRL’s signature field MUST be as specified in Section 4 of [RFC7935]; this is the same format used by other RPKI certificates. The structure for the certification request’s and BGPsec UPDATE message’s signature field MUST be as specified in Section 2.2.3 of [RFC3279].

5. Additional Requirements

It is anticipated that BGPsec will require the adoption of updated key sizes and a different set of signature and hash algorithms over time, in order to maintain an acceptable level of cryptographic security. This profile should be updated to specify such future requirements, when appropriate.

The recommended procedures to implement such a transition of key sizes and algorithms are specified in [RFC6916].

6. Security Considerations

The security considerations of [RFC3279], [RFC5480], [RFC6090], [RFC7935], and [RFC8209] apply to certificates. The security considerations of [RFC3279], [RFC6090], [RFC7935], and [RFC8209] apply to certification requests. The security considerations of [RFC3279], [RFC6090], and [RFC8205] apply to BGPsec UPDATE messages. No new security considerations are introduced as a result of this specification.

7. IANA Considerations

The Internet Assigned Numbers Authority (IANA) has created the "BGPsec Algorithm Suites" registry in the Resource Public Key Infrastructure (RPKI) group. The one-octet algorithm suite identifiers assigned by IANA identify the digest algorithm and signature algorithm used in the BGPsec Signature_Block List’s Algorithm Suite Identifier field.

Per [RFC8208], IANA registered a single algorithm suite identifier for the digest algorithm SHA-256 [SHS] and for the signature algorithm ECDSA on the P-256 curve [RFC6090] [DSS]. This identifier
is still valid, and IANA has updated the registration to refer to this document.

IANA has modified the range of the "Unassigned" address space from "0x2-0xEF" to "0x02-0xF6":

<table>
<thead>
<tr>
<th>Algorithm Suite</th>
<th>Digest Algorithm</th>
<th>Signature Algorithm</th>
<th>Specification Pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x02-0xF6</td>
<td>Unassigned</td>
<td>Unassigned</td>
<td></td>
</tr>
</tbody>
</table>

In addition, IANA has registered the following address spaces for "Experimentation" and "Documentation":

<table>
<thead>
<tr>
<th>Algorithm Suite</th>
<th>Digest Algorithm</th>
<th>Signature Algorithm</th>
<th>Specification Pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xF7-0xFA</td>
<td>Experimentation</td>
<td>Experimentation</td>
<td>This document</td>
</tr>
<tr>
<td>0xFB-0xFE</td>
<td>Documentation</td>
<td>Documentation</td>
<td>This document</td>
</tr>
</tbody>
</table>

The "BGPsec Algorithm Suites" registry in the RPKI group now contains the following values:

<table>
<thead>
<tr>
<th>Algorithm Suite</th>
<th>Digest Algorithm</th>
<th>Signature Algorithm</th>
<th>Specification Pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Reserved</td>
<td>Reserved</td>
<td>This document</td>
</tr>
<tr>
<td>0x01</td>
<td>SHA-256</td>
<td>ECDSA P-256</td>
<td>[SHS] [DSS] [RFC6090]</td>
</tr>
<tr>
<td>0x02-0xF6</td>
<td>Unassigned</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>0xF7-0xFA</td>
<td>Experimentation</td>
<td>Experimentation</td>
<td>This document</td>
</tr>
<tr>
<td>0xFB-0xFE</td>
<td>Documentation</td>
<td>Documentation</td>
<td>This document</td>
</tr>
<tr>
<td>0xFF</td>
<td>Reserved</td>
<td>Reserved</td>
<td>This document</td>
</tr>
</tbody>
</table>
Future assignments are to be made using the Standards Action process defined in [RFC8126]. Assignments consist of the one-octet algorithm suite identifier value and the associated digest algorithm name and signature algorithm name.

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Examples

A.1. Topology and Experiment Description

Topology:

AS(64496)----AS(65536)----AS(65537)

Prefix Announcement: AS(64496), 192.0.2.0/24, 2001:db8::/32

The signature algorithm used in this example is ECDSA P-256, using the algorithm suite identifier ID 0x01 (1) as specified in Section 7 of this document.

A.2. Keys

For this example, the ECDSA algorithm was provided with a static k to make the result deterministic.

The k used for all signature operations was taken from [RFC6979], Appendix A.2.5, "Signatures With SHA-256, message = ‘sample’".

Note: Even though the certificates below are expired, they are still useful within the constraint of this document.

 k = A6E3C57DD01ABE90086538398355DD4C
 3B17AA873382B0F24D6129493D8AAD60

Keys of AS64496:
================

ski: AB4D910F55CAE71A215EF3CAFE3ACC45B5EEC154

private key:
 x = D8A4D4BE2478F86E88A7451BF075565
 709C575AC1C136D081C540254CA440B9

public key:
 Ux = 7391BABB92A0C3B3BE10E59B19EBFFB21
 4E04A91E0CBA1B139A7D38D90F77E55A
 Uy = A05B8E695678E0FA16904B55D9D4F5C0
 DFC58895EE50BC4F75D205A25BD36FF5
Router Key Certificate example using OpenSSL 1.0.1e-fips 11 Feb 2013

Certificate:

```
Certificate:
Data:
  Version: 3 (0x2)
  Serial Number: 38655612 (0x24dd67c)
  Signature Algorithm: ecdsa-with-SHA256
  Issuer: CN=ROUTER-0000FBF0
  Validity
    Not Before: Jan 1 05:00:00 2017 GMT
    Not After : Jul 1 05:00:00 2018 GMT
  Subject Public Key Info:
    Public Key Algorithm: id-ecPublicKey
    Public-Key: (256 bit)
      pub:
        a2:5b:db:3:6f:f5
      ASN1 OID: prime256v1
  X509v3 extensions:
    X509v3 Key Usage:
      Digital Signature
    X509v3 Subject Key Identifier:
      AB:4D:91:0F:55:CA:E7:1A:21:5E:
      F3:CA:FE:3A:CC:45:B5:EE:C1:54
    X509v3 Extended Key Usage:
      1.3.6.1.5.5.7.3.30
      sbgp-autonomousSysNum: critical
      Autonomous System Numbers:
        64496
    Routing Domain Identifiers:
      inherit
    Signature Algorithm: ecdsa-with-SHA256
```
-----BEGIN CERTIFICATE-----
MIIBiDCCAS+gAwIBAgIEAk3WfDAKBggqhkjOPQQDAjAaMRgwFgYDVQQDDDA9ST1VU RVItMDAwMEZCRjAwHhcNMTCmMTAxMDAwMDAwMDAwMDAwMDAwJAAaMRgwFgYDVQQDDDA9ST1VURVItMDAwMEZCRjAwWTATBgqcqhkjOPQIBggqhkjOPQMBBwWC AARzkbg7qkDL0+EOWbGev/shTgSpHgy6GxOafTjZD3flWqBbmjIWeOD6FpBLVdmU 9cDfxyIv7LC873XSBaJb02/io2MwYTALBgNVHQ8EBAMCB4AwHQYDVHR0BBYEYFkT NkQ9VyucAvT7zyv46zEW17sFUBMBGA1UdJQQMAoGCCsGAQUFBwMeMB4GCCsGAQUFB wEIAQHA/BA8wDaAHMCAwD78KECBQAwCgYIKoZIzj0EAwIDRwAwRAIgB7e0al+k 8cxoNjkDpIPsfIAc0vUInUay7Cp75pKzvb7ECIACRBUqh9bAYnSck6LQi/dEc8D2x OCRdZClkiI3uDDgp
-----END CERTIFICATE-----

Keys of AS(65536):

ski: 47F23BF1AB2F8A9D26864EBDB8DF2711C74406EC

private key:

x = 6CB2E931B112F24554BCDCAAFD9553A9
 519A9AF33C023B60846A21FC95538172

copy key:

Ux = 28FC5FE9AFCF5F5F85CB212FC1
 E9D0EEDEAE425BD2F0D3175AA0E989
Uy = EA9B603E38F35FB329DF495641F2BA04
 0F13AC6138307F257CB68B8588F41F

Router Key Certificate example using OpenSSL 1.0.1e-fips 11 Feb 2013

Certificate:

Data:

Version: 3 (0x2)
Serial Number: 3752143940 (0xdfa52c44)
Signature Algorithm: ecdsa-with-SHA256
Issuer: CN=ROUTER-00010000
Validity
 Not Before: Jan 1 05:00:00 2017 GMT
 Not After : Jul 1 05:00:00 2018 GMT
Subject: CN=ROUTER-00010000
Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 2f:c1:e8:d0:e0:db:ea:ee:42:5b:d2:f0:d3:17:5a:
 b8:b5:88:f4:1f
 ASN1 OID: prime256v1

Turner & Borchert Standards Track [Page 14]
X509v3 extensions:
X509v3 Key Usage:
 Digital Signature
X509v3 Subject Key Identifier:
 47:F2:3B:F1:AB:2F:8A:9D:26:86:
X509v3 Extended Key Usage:
 1.3.6.1.5.5.7.3.30
sbgp-autonomousSysNum: critical
Autonomous System Numbers:
 65536
Routing Domain Identifiers:
 inherit

Signature Algorithm: ecdsa-with-SHA256

-----BEGIN CERTIFICATE-----
MIIBijCCATCgAwIBAgIFAN+lLEwQgYIKoZIzj0EAwIwGjEYMBYGA1UEAwwPUK9V
VEVSLTawMDExMDAwMDB4XDTExMDEwMDAwMFoXDTE4MDcwMDAwMFowGjEY
MBYGA1UEAwwPUk9VEVSLTawMDExMDAwMFKwYIKoZIzj0DAQcD
QgAEKPx/ef6a/PX0yrFl+FyyEvwenQ4NVq7kJb0vDTF1q96YncmZ2A+OPNg3ynfSVZB
8roEDxw6xhODB/JXy6a4t/yj0H6NjMGsEwYDVR0PBAQDAgeAMB0GA1UdDgQWBBRH
8jvwxqy+KnSaGTryf3ycR0QG7DABgNVHUSEDDAKBgrBgEFBHAcQDjABeBgrBgEF
BQcCBAEw/wQPMA2gBzAFagMDAChAgUAMoGCCqGSM49BAMCA0gAMEUCIQCM2fgS
loiCdA0hgoIYxTEA7jU46Fqncgn+mGcBeGl3jAIgX+46vxBnvijTszaha9tMIZnt
puStZy6v0T7y7dQkXQ=
-----END CERTIFICATE-----
A.3. BGPsec IPv4

BGPsec IPv4 UPDATE from AS(65536) to AS(65537):
===
Binary Form of BGPsec UPDATE (TCP-DUMP):
FF FF
01 03 02 00 00 00 EC 40 01 01 02 80 04 04 00 00
00 00 80 0E DD 00 01 01 04 C6 33 64 64 00 18 C0
00 02 90 1E 00 CD 00 0E 01 00 00 01 00 00 01 00
00 00 FB F0 00 BF 01 47 F2 3B F1 AB 2F 8A 9D 26
86 4E BB D8 DF 27 11 C7 44 06 EC 00 48 30 46 02
21 00 EF D4 8B 2A AC B6 A8 FD 11 40 DD 9C D4 5E
81 D6 9D 2C 87 7B 56 AA FF 91 C3 4D 0E 8E 4E AF
37 16 02 21 00 90 F2 C1 29 AB B2 F3 9B 6A 07 96
3B D5 55 A8 7A B2 B7 33 3B 7B 91 F1 66 8F D8 61
8C 83 FA C3 F1 AB 4D 91 0F 55 CA E7 1A 21 5E F3
CA FE 3A CC 45 B5 EE C1 54 00 48 30 46 02 21 00
EF D4 8B 2A AC B6 A8 FD 11 40 DD 9C D4 5E 81 D6
9D 2C 87 7B 56 AA FF 91 C3 4D 0E 8E 4E AF 37 16
02 21 00 8E 21 F6 0E 44 C6 06 6C 8B 8A 95 A3 C0
9D 3A D4 37 95 85 A2 D7 28 EE AD 07 A1 7E D7 AA
05 5E CA

Signature from AS(64496) to AS(65536):

Digest: 21 33 E5 CA A0 26 BE 07 3D 9C 1B 4E FE B9 B9 77
9F 20 F8 F5 DE 29 FA 98 40 00 9F 60 47 D0 81 54
Signature: 30 46 02 21 00 EF D4 8B 2A AC B6 A8 FD 11 40 DD
9C D4 5E 81 D6 9D 2C 87 7B 56 AA F9 91 C3 4D 0E
A8 4E AF 37 16 02 21 00 8E 21 F6 0E 44 C6 06 6C
8B 8A 95 A3 C0 9D 3A D4 37 95 85 A2 D7 28 EE AD
07 A1 7E D7 AA 05 5E CA

Signature from AS(65536) to AS(65537):

Digest: 01 4F 24 DA E2 A5 21 90 B0 80 5C 60 5D B0 63 54
22 3E 93 BA 41 1D 3D 82 A3 EC 26 36 52 0C 5F 84
Signature: 30 46 02 21 00 EF D4 8B 2A AC B6 A8 FD 11 40 DD
9C D4 5E 81 D6 9D 2C 87 7B 56 AA F9 91 C3 4D 0E
A8 4E AF 37 16 02 21 00 90 F2 C1 29 AB B2 F3 9B
6A 07 96 3B D5 55 A8 7A B2 B7 33 3B 7B 91 F1 66
8F D8 61 8C 83 FA C3 F1

The human-readable output is produced using bgpsec-io, a BGPsec traffic generator that uses a Wireshark-like printout.
Send UPDATE Message

+--marker: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
+--length: 259
+--type: 2 (UPDATE)
+--withdrawn_routes_length: 0
+--total_path_attr_length: 236
 +--ORIGIN: INCOMPLETE (4 bytes)
 | +--Flags: 0x40 (Well-Known, Transitive, Complete)
 | +--Type Code: ORIGIN (1)
 | +--Length: 1 byte
 | +--Origin: INCOMPLETE (1)
 +--MULTI_EXIT_DISC (7 bytes)
 | +--Flags: 0x80 (Optional, Non-transitive, Complete)
 | +--Type Code: MULTI_EXIT_DISC (4)
 | +--Length: 4 bytes
 | +--data: 00 00 00 00
 +--MP_REACH_NLRI (16 bytes)
 | +--Flags: 0x80 (Optional, Non-transitive, Complete)
 | +--Type Code: MP_REACH_NLRI (14)
 | +--Length: 13 bytes
 | +--Address family: IPv4 (1)
 | +--Subsequent address family identifier: Unicast (1)
 | +--Next hop network address: (4 bytes)
 | --Next hop: 198.51.100.100
 | +--Subnetwork points of attachment: 0
 | +--Network layer reachability information: (4 bytes)
 | --192.0.2.0/24
 | --MP Reach NLRI prefix length: 24
 | --MP Reach NLRI IPv4 prefix: 192.0.2.0
 +--BGPSEC Path Attribute (209 bytes)
 | +--Flags: 0x90 (Optional, Complete, Extended Length)
 | +--Type Code: BGPSEC Path Attribute (30)
 | +--Length: 205 bytes
 | +--Secure Path (14 bytes)
 | +--Length: 14 bytes
 | +--Secure Path Segment: (6 bytes)
 | --pCount: 1
 | --Flags: 0
 | --AS number: 65536 (1.0)
 | +--Secure Path Segment: (6 bytes)
 | --pCount: 1
 | --Flags: 0
 | --AS number: 64496 (0.64496)
 | +--Signature Block (191 bytes)
 | +--Length: 191 bytes
 | +--Algo ID: 1
A.4. BGPsec IPv6

BGPsec IPv6 UPDATE from AS(65536) to AS(65537):

Binary Form of BGP/BGPsec UPDATE (TCP-DUMP):

```
FF FF FF FF FF FF FF FF  FF FF FF FF FF FF FF FF
01 10 02 00 00 00 F9 40  01 01 02 80 04 04 00 00
00 00 80 0E 1A 00 02 01 10 FD 00 00 00 00 00 00
00 00 00 00 00 C6 33 64 64 00 20 20 01 0D B8 90
1E 00 CD 00 0E 01 00 00 01 00 00 01 00 00 00 FB
F0 00 BF 01 47 F2 3B F1  AB 2F 3B 80 04 00 00 00
D8 DF 27 11 C7 44 06 EC 00 48 30 46 02 21 00 EF
D4 8B 2A AC B6 A8 FD 11 40 DD 9C D4 5E 81 D6 9D
2C 87 7B 56 A4 F9 91 C3 4D 0E A8 4E AF 37 16 02
21 00 D1 B9 4F 62 51 04 6D 21 36 A1 05 B0 F4 72
7C C5 BC D6 74 D9 7D 28 E6 1B 8F 43 BD DE 91 C3
06 26 AB 4D 91 0F 55 CA E7 1A 21 5E F3 CA FE 3A
CC 45 B5 EE C1 54 00 48 30 46 02 21 00 EF D4 8B
2A AC B6 A8 FD 11 40 DD 9C D4 5E 81 D6 9D 2C 87
7B 56 AA F9 91 C3 4D 0E A8 4E AF 37 16 02 21 00
E2 A0 2C 68 FE 53 CB 96 93 4C 78 1F 5A 14 A2 97
19 79 20 0C 91 56 ED F8 55 05 8E 80 53 F4 AC D3
```
Signature from AS(64496) to AS(65536):

Digest: 8A 0C D3 E9 8E 55 10 45 82 1D 80 46 01 D6 55 FC
 52 11 89 DF 4D B0 28 7D 84 AC FC 77 55 6D 06 C7
Signature: 30 46 02 21 00 EF D4 8B 2A AC B6 A8 FD 11 40 DD
 9C D4 5E 81 D6 9D 2C 87 7B 56 AA F9 91 C3 4D 0E
 A8 4E AF 37 16 02 21 00 E2 A0 2C 68 FE 53 CB 96
 93 4C 78 1F 5A 14 A2 97 19 79 20 0C 91 56 ED F8
 55 05 8E 80 53 F4 AC D3

Signature from AS(65536) to AS(65537):

Digest: 44 49 EC 70 8D EC 5C 85 00 C2 17 8C 72 FE 4C 79
 FF A9 3C 95 31 61 01 2D EE 7E EE 05 46 AF 5F D0
Signature: 30 46 02 21 00 EF D4 8B 2A AC B6 A8 FD 11 40 DD
 9C D4 5E 81 D6 9D 2C 87 7B 56 AA F9 91 C3 4D 0E
 A8 4E AF 37 16 02 21 00 D1 B9 4F 62 51 04 6D 21
 36 A1 05 B0 F4 72 7C C5 BC D6 74 D9 7D 28 E6 1B
 8F 43 BD DE 91 C3 06 26

The human-readable output is produced using bgpsec-io, a BGPsec traffic generator that uses a Wireshark-like printout.

Send UPDATE Message
 +--marker: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
 +--length: 272
 +--type: 2 (UPDATE)
 +--withdrawn_routes_length: 0
 +--total_path_attr_length: 249
 +--ORIGIN: INCOMPLETE (4 bytes)
 | +--Flags: 0x40 (Well-Known, Transitive, Complete)
 | +--Type Code: ORIGIN (1)
 | +--Length: 1 byte
 | +--Origin: INCOMPLETE (1)
 +--MULTI_EXIT_DISC (7 bytes)
 | +--Flags: 0x80 (Optional, Non-transitive, Complete)
 | +--Type Code: MULTI_EXIT_DISC (4)
 | +--Length: 4 bytes
 | +--data: 00 00 00 00
 +--MP_REACH_NLRI (29 bytes)
 | +--Flags: 0x80 (Optional, Non-transitive, Complete)
 | +--Type Code: MP_REACH_NLRI (14)
 | +--Length: 26 bytes
 | +--Address family: IPv6 (2)
 | +--Subsequent address family identifier: Unicast (1)
 | +--Next hop network address: 16 bytes
 | | +--Next hop: fd00:0000:0000:0000:0000:0000:c633:6464
 | +--Subnetwork points of attachment: 0

Turner & Borchert Standards Track [Page 19]
| +--Network layer reachability information: (5 bytes) |
| +--2001:db8::/32 |
| +--MP Reach NLRI prefix length: 32 |
| +--MP Reach NLRI IPv6 prefix: 2001:db8:: |
| +--BGPSEC Path Attribute (209 bytes) |
| +--Flags: 0x90 (Optional, Complete, Extended Length) |
| +--Type Code: BGPSEC Path Attribute (30) |
| +--Length: 205 bytes |
| +--Secure Path (14 bytes) |
| +--Length: 14 bytes |
	+--Secure Path Segment: (6 bytes)
	+--pCount: 1
	+--Flags: 0
	+--AS number: 65536 (1.0)
	+--Secure Path Segment: (6 bytes)
	+--pCount: 1
	+--Flags: 0
	+--AS number: 64496 (0.64496)
+--Signature Block (191 bytes)	
+--Length: 191 bytes	
+--Algo ID: 1	
+--Signature Segment: (94 bytes)	
	+--SKI: 47F23BF1AB2F8A9D26864EBBD8DF2711C74406EC
	+--Length: 72 bytes
	+--Signature: 3046022100EFD48B 2AACB6A8FD1140DD 9CD45E81D69D2C87 7B56AA9F991C34D0E
	+--Signature Segment: (94 bytes)
Acknowledgements

The authors wish to thank Geoff Huston and George Michaelson for producing [RFC7935], which this document is entirely based on. The authors would also like to thank Roque Gagliano, David Mandelberg, Tom Petch, Sam Weiler, and Stephen Kent for their reviews and comments. Mehmet Adalier, Kotikalapudi Sriram, and Doug Montgomery were instrumental in developing the test vectors found in Appendix A. Additionally, we want to thank Geoff Huston, author of [RFC5398] from which we borrowed wording for Section 2.1 of this document.

Authors’ Addresses

Sean Turner
sn3rd
Email: sean@sn3rd.com

Oliver Borchert
NIST
100 Bureau Drive
Gaithersburg, MD 20899
United States of America
Email: oliver.borchert@nist.gov